论文标题

广义意图发现:从开放世界对话系统中学习

Generalized Intent Discovery: Learning from Open World Dialogue System

论文作者

Mou, Yutao, He, Keqing, Wu, Yanan, Wang, Pei, Wang, Jingang, Wu, Wei, Huang, Yi, Feng, Junlan, Xu, Weiran

论文摘要

传统意图分类模型基于预定义的意图集,仅识别有限的内域(IND)意图类别。但是用户可以在实用的对话系统中输入室外(OOD)查询。这样的OOD查询可以提供未来改进的方向。在本文中,我们定义了一项新任务,广义意图发现(GID),旨在将IND意图分类器扩展到包括IND和OOD意图在内的开放世界意图集。我们希望在发现和识别新的未标记的OOD类型的同时,同时对一组标记的IND意图类进行分类。我们为不同的应用程序方案构建了三个公共数据集,并提出了两种框架,即基于管道的框架和端到端的框架。此外,我们进行详尽的实验和定性分析,以理解关键挑战,并为未来的GID研究提供新的指导。

Traditional intent classification models are based on a pre-defined intent set and only recognize limited in-domain (IND) intent classes. But users may input out-of-domain (OOD) queries in a practical dialogue system. Such OOD queries can provide directions for future improvement. In this paper, we define a new task, Generalized Intent Discovery (GID), which aims to extend an IND intent classifier to an open-world intent set including IND and OOD intents. We hope to simultaneously classify a set of labeled IND intent classes while discovering and recognizing new unlabeled OOD types incrementally. We construct three public datasets for different application scenarios and propose two kinds of frameworks, pipeline-based and end-to-end for future work. Further, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide new guidance for future GID research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源