论文标题

部分可观测时空混沌系统的无模型预测

Verified Compositions of Neural Network Controllers for Temporal Logic Control Objectives

论文作者

Wang, Jun, Kalluraya, Samarth, Kantaros, Yiannis

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper presents a new approach to design verified compositions of Neural Network (NN) controllers for autonomous systems with tasks captured by Linear Temporal Logic (LTL) formulas. Particularly, the LTL formula requires the system to reach and avoid certain regions in a temporal/logical order. We assume that the system is equipped with a finite set of trained NN controllers. Each controller has been trained so that it can drive the system towards a specific region of interest while avoiding others. Our goal is to check if there exists a temporal composition of the trained NN controllers - and if so, to compute it - that will yield composite system behaviors that satisfy a user-specified LTL task for any initial system state belonging to a given set. To address this problem, we propose a new approach that relies on a novel integration of automata theory and recently proposed reachability analysis tools for NN-controlled systems. We note that the proposed method can be applied to other controllers, not necessarily modeled by NNs, by appropriate selection of the reachability analysis tool. We focus on NN controllers due to their lack of robustness. The proposed method is demonstrated on navigation tasks for aerial vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源