论文标题
相干波在多个太阳磁孔中的传播
The Propagation of Coherent Waves Across Multiple Solar Magnetic Pores
论文作者
论文摘要
太阳孔是有效的磁导管,用于将磁流失动力波能传播到太阳大气的外部区域。孔观测通常包含孤立和/或未连接的结构,从而阻止了波动活动作为大气高度的函数的统计检查。在这里,使用Dunn太阳能望远镜获得的高分辨率观测值,我们检查了来自来自相同衰减黑子的独特磁孔的光球和色球波签名。高节奏光谱成像的小波分析揭示了慢慢的香肠模式振荡的存在,通过比较强度和面积波动的比较,在所有光球孔中相干,从而产生统计学意义的同相关系。这些波的普遍性质允许研究波活性在传播时是否保持一致。利用CA II8542Å线的双层式多普勒速度分析,除了对建模的光谱响应函数的比较,我们发现波浪的细尺度为5 MHz功率扩增,随着波的传播到染色体上。跨越不同线深度的共同空间双层扇区之间接近零度的相角表明在反射针对过渡区域边界的反射后站立香肠模式。相邻孔之间的色球速度的傅立叶分析揭示了在光球中观察到的波相干性的an灭,并检查了单个孔中的强度和速度信号,表明它们表现为断裂的波浪指南,而不是整个孔结构。重要的是,这项工作强调了具有大气高度的波形形态非常复杂,尽管在光球中将等效波模式引入了相似的孔,但在色球层上观察到了巨大的差异。
Solar pores are efficient magnetic conduits for propagating magnetohydrodynamic wave energy into the outer regions of the solar atmosphere. Pore observations often contain isolated and/or unconnected structures, preventing the statistical examination of wave activity as a function of atmospheric height. Here, using high resolution observations acquired by the Dunn Solar Telescope, we examine photospheric and chromospheric wave signatures from a unique collection of magnetic pores originating from the same decaying sunspot. Wavelet analysis of high cadence photospheric imaging reveals the ubiquitous presence of slow sausage mode oscillations, coherent across all photospheric pores through comparisons of intensity and area fluctuations, producing statistically significant in-phase relationships. The universal nature of these waves allowed an investigation of whether the wave activity remained coherent as they propagate. Utilizing bi-sector Doppler velocity analysis of the Ca II 8542 Å line, alongside comparisons of the modeled spectral response function, we find fine-scale 5 mHz power amplification as the waves propagate into the chromosphere. Phase angles approaching zero degrees between co-spatial bi-sectors spanning different line depths indicate standing sausage modes following reflection against the transition region boundary. Fourier analysis of chromospheric velocities between neighboring pores reveals the annihilation of the wave coherency observed in the photosphere, with examination of the intensity and velocity signals from individual pores indicating they behave as fractured wave guides, rather than monolithic structures. Importantly, this work highlights that wave morphology with atmospheric height is highly complex, with vast differences observed at chromospheric layers, despite equivalent wave modes being introduced into similar pores in the photosphere.