论文标题
Moiré工程和拓扑扁平带中的旋转轨道活性双层
Moiré Engineering and Topological Flat Bands in Twisted Orbital-Active Bilayers
论文作者
论文摘要
费米级别的拓扑平面带提供了一个有希望的平台,可以研究物质的各种有趣的相关阶段。在这里,我们在带有旋转轨道耦合的扭曲轨道活性双层中介绍了乐队工程。层间耦合的对称约束确定了Moiré电子低能物理学的有效潜在的二维点基团的有效潜力。我们发现Moiré图案的线图或两粒子具有最小的$ C_3 $对称性的出现,它们表现出具有非平凡拓扑结构的孤立的电子平坦带。频带的平坦度对扭曲角度不敏感,因为它们来自干扰效果。我们预测,根据这一指导原则,2H-PBS $ _2 $和CD的扭曲双层意识到工程师二维拓扑量子阶段的显着物理学。 PBS $ _2 $异质结构在小扭曲角度上产生了新兴的MoiréKagomé晶格,而CDS异质结构导致了新兴的MoiréHoneycomb晶格,并且两个人都主持了Moiré量子旋转厅绝缘子,并带有几乎平坦的拓扑谱带。我们进一步研究了这两个系统具有局部吸引人相互作用的超导性。当配对势超过频带宽度时,超级流体的重量和berezinskii-kosterlitz-thou thou thou thou thou thou thou thou thou thou thou the the the the the the Wemperion均可确定频段的多频过程和量子几何形状。我们的结果表明,具有多轨道的双层扭曲的双层是一个有前途的可调平台,以实现相关的拓扑阶段。
Topological flat bands at the Fermi level offer a promising platform to study a variety of intriguing correlated phase of matter. Here we present band engineering in the twisted orbital-active bilayers with spin-orbit coupling. The symmetry constraints on the interlayer coupling that determines the effective potential for low-energy physics of moiré electrons are exhaustively derived for two-dimensional point groups. We find the line graph or biparticle sublattice of moiré pattern emerge with a minimal $C_3$ symmetry, which exhibit isolated electronic flat bands with nontrivial topology. The band flatness is insensitive to the twist angle since they come from the interference effect. Armed with this guiding principle, we predict that twisted bilayers of 2H-PbS$_2$ and CdS realize the salient physics to engineer two-dimensional topological quantum phases. At small twist angles, PbS$_2$ heterostructures give rise to an emergent moiré Kagomé lattice, while CdS heterostructures lead to an emergent moiré honeycomb lattice, and both of them host moiré quantum spin Hall insulators with almost flat topological bands. We further study superconductivity of these two systems with local attractive interactions. The superfluid weight and Berezinskii-Kosterlitz-Thouless temperature are determined by multiband processes and quantum geometry of the band in the flat-band limit when the pairing potential exceeds the band width. Our results demonstrate twisted bilayers with multi-orbitals as a promising tunable platform to realize correlated topological phases.