论文标题
优化的强大科学机器学习:一种新颖的鲁棒性定理
A Robust Scientific Machine Learning for Optimization: A Novel Robustness Theorem
论文作者
论文摘要
科学机器学习(SCIML)是对几个不同应用领域的兴趣越来越多的领域。在优化上下文中,基于SCIML的工具使开发更有效的优化方法。但是,必须谨慎评估和执行实施优化的SCIML工具。这项工作提出了稳健性测试的推论,该测试通过表明其结果尊重通用近似值定理,从而确保了基于多物理SCIML的优化的鲁棒性。该测试应用于一种新方法的框架,该方法在一系列基准测试中进行了评估,以说明其一致性。此外,将提出的方法论结果与严格优化的可行区域进行了比较,这需要更高的计算工作。因此,这项工作为保证在多目标优化中应用SCIML工具的稳健性测试提供了比存在的替代方案要低的计算努力。
Scientific machine learning (SciML) is a field of increasing interest in several different application fields. In an optimization context, SciML-based tools have enabled the development of more efficient optimization methods. However, implementing SciML tools for optimization must be rigorously evaluated and performed with caution. This work proposes the deductions of a robustness test that guarantees the robustness of multiobjective SciML-based optimization by showing that its results respect the universal approximator theorem. The test is applied in the framework of a novel methodology which is evaluated in a series of benchmarks illustrating its consistency. Moreover, the proposed methodology results are compared with feasible regions of rigorous optimization, which requires a significantly higher computational effort. Hence, this work provides a robustness test for guaranteed robustness in applying SciML tools in multiobjective optimization with lower computational effort than the existent alternative.