论文标题

量子极性代码编码一个逻辑量子的含断层耐受性制备

Fault-Tolerant Preparation of Quantum Polar Codes Encoding One Logical Qubit

论文作者

Goswami, Ashutosh, Mhalla, Mehdi, Savin, Valentin

论文摘要

本文探讨了一种依赖量子极性代码的新方法(FTQC)。我们考虑calderbank-s-s-s-s-steane类型的量子极性代码,编码一个逻辑量子,我们称为$ \ Mathcal {q} _1 $ codes。首先,我们表明$ \ Mathcal {q} _1 $代码的亚家族相当于著名的Shor代码家族。此外,我们表明$ \ Mathcal {q} _1 $代码大大超过了相同的长度和最小距离。其次,我们考虑$ \ MATHCAL {Q} _1 $代码状态的易于故障的准备。我们提供了一个递归程序,以准备$ \ Mathcal {q} _1 $代码状态,仅基于两倍的Pauli测量。但是,该过程本身并非易于断层,但是,其中的测量操作提供了冗余的经典位,可以有利地用于错误检测。然后,通过将提出的递归程序与错误检测方法相结合,可以实现易耐受性。最后,我们考虑$ \ Mathcal {q} _1 $代码的容忍错误误差校正。我们使用Steane误差校正,其中包含了所提出的耐故障代码状态准备程序。我们提供了$ \ Mathcal {q} _1 $的逻辑错误率的数值估计以及长度$ 16 $和$ 64 $ QUBITS的shor代码,假设是电路级的去极化噪声模型。值得注意的是,对于物理错误率$ p = 10^{ - 3} $,$ 64 $ QUBITS的$ \ MATHCAL {q} _1 $长度代码$ 64 $ QUBITS非常接近$ 10^{ - 6} $,因此,证明了针对FTQC的基于拟议的极性代码的潜力。

This paper explores a new approach to fault-tolerant quantum computing (FTQC), relying on quantum polar codes. We consider quantum polar codes of Calderbank-Shor-Steane type, encoding one logical qubit, which we refer to as $\mathcal{Q}_1$ codes. First, we show that a subfamily of $\mathcal{Q}_1$ codes is equivalent to the well-known family of Shor codes. Moreover, we show that $\mathcal{Q}_1$ codes significantly outperform Shor codes, of the same length and minimum distance. Second, we consider the fault-tolerant preparation of $\mathcal{Q}_1$ code states. We give a recursive procedure to prepare a $\mathcal{Q}_1$ code state, based on two-qubit Pauli measurements only. The procedure is not by itself fault-tolerant, however, the measurement operations therein provide redundant classical bits, which can be advantageously used for error detection. Fault-tolerance is then achieved by combining the proposed recursive procedure with an error detection method. Finally, we consider the fault-tolerant error correction of $\mathcal{Q}_1$ codes. We use Steane error correction, which incorporates the proposed fault-tolerant code state preparation procedure. We provide numerical estimates of the logical error rates for $\mathcal{Q}_1$ and Shor codes of length $16$ and $64$ qubits, assuming a circuit-level depolarizing noise model. Remarkably, the $\mathcal{Q}_1$ code of length $64$ qubits achieves a logical error rate very close to $10^{-6}$ for the physical error rate $p = 10^{-3}$, therefore, demonstrating the potential of the proposed polar codes based approach to FTQC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源