论文标题

非亚洲非肌性手性对称性

Non-Abelian nonsymmorphic chiral symmetries

论文作者

Yang, Yi, Po, Hoi Chun, Liu, Vincent, Joannopoulos, John D., Fu, Liang, Soljačić, Marin

论文摘要

霍夫史塔特模型例证了一大类的物理系统,这些系统的特征是颗粒在浸入量规场的晶格上跳跃。各种合成平台上的最新进步已实现了对此类系统的高度控制模拟,该系统具有带有复杂空间纹理的量身定制轨迹字段。这些合成量规场可能会引入不出现电子材料中的合成对称性。在这里,在SU(2)非亚伯式霍夫塔特模型中,我们从理论上显示了多种非词性手性对称性的出现,该符号结合了内部单位抗对称性与分数空间翻译。根据量规场的值,非形态性手性对称性可以表现出非亚伯式代数,并在整体带结构中保护克雷默四重奏状态,从而在全动力上产生一般的四倍堕落。这些非形态性手性对称性在零能量下保护双狄拉克半学,在引入边界时,它们会夹在量子限制的绝缘阶段中。此外,系统大小的均衡性可以确定所得的绝缘阶段是微不足道的还是拓扑的。我们的工作表明了通过从合成量规场出现的合成对称性来创建拓扑的途径。

The Hofstadter model exemplifies a large class of physical systems characterized by particles hopping on a lattice immersed in a gauge field. Recent advancements on various synthetic platforms have enabled highly-controllable simulations of such systems with tailored gauge fields featuring complex spatial textures. These synthetic gauge fields could introduce synthetic symmetries that do not appear in electronic materials. Here, in an SU(2) non-Abelian Hofstadter model, we theoretically show the emergence of multiple nonsymmorphic chiral symmetries, which combine an internal unitary anti-symmetry with fractional spatial translation. Depending on the values of the gauge fields, the nonsymmorphic chiral symmetries can exhibit non-Abelian algebra and protect Kramer quartet states in the bulk band structure, creating general four-fold degeneracy at all momenta. These nonsymmorphic chiral symmetries protect double Dirac semimetals at zero energy, which become gapped into quantum confined insulating phases upon introducing a boundary. Moreover, the parity of the system size can determine whether the resulting insulating phase is trivial or topological. Our work indicates a pathway for creating topology via synthetic symmetries emergent from synthetic gauge fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源