论文标题
对无线双向拆分Koopman自动编码器进行预测性闭环遥控器
Predictive Closed-Loop Remote Control over Wireless Two-Way Split Koopman Autoencoder
论文作者
论文摘要
对无线的实时远程控制是5G及以后的最重要的挑战性应用程序,这是由于其关键任务在有限的沟通资源下。当前的解决方案不仅可以利用超级可靠和低延迟的通信(URLLC)链接,还可以预测未来的状态,这可能会消耗巨大的沟通资源,并在短暂的预测时间范围内挣扎。为了填补这一空白,在本文中,我们提出了一种新颖的双向Koopman自动编码器(AE)方法,其中:1)传感Koopman AE学会了了解时间状态动力学,并预测从传感器到其遥控器的缺失数据包; 2)控制Koopman AE学会了了解时间动作动力学,并预测从控制器到与传感器共同划分的执行器的丢失数据包。具体而言,每个Koopman AE旨在学习隐藏层的Koopman操作员,而AE的编码器旨在将非线性动力学投影到升起的子空间上,该子空间被AE的解码器恢复为原始的非线性动力学。 Koopman操作员描述了线性化的时间动力学,从而实现了长期的未来预测,并应对缺少的数据包和封闭形式的最佳控制。模拟结果证实了所提出的方法在0 dbm信噪比(SNR)下的平均平方控制误差(SNR)比非预测性基线低38倍。
Real-time remote control over wireless is an important-yet-challenging application in 5G and beyond due to its mission-critical nature under limited communication resources. Current solutions hinge on not only utilizing ultra-reliable and low-latency communication (URLLC) links but also predicting future states, which may consume enormous communication resources and struggle with a short prediction time horizon. To fill this void, in this article we propose a novel two-way Koopman autoencoder (AE) approach wherein: 1) a sensing Koopman AE learns to understand the temporal state dynamics and predicts missing packets from a sensor to its remote controller; and 2) a controlling Koopman AE learns to understand the temporal action dynamics and predicts missing packets from the controller to an actuator co-located with the sensor. Specifically, each Koopman AE aims to learn the Koopman operator in the hidden layers while the encoder of the AE aims to project the non-linear dynamics onto a lifted subspace, which is reverted into the original non-linear dynamics by the decoder of the AE. The Koopman operator describes the linearized temporal dynamics, enabling long-term future prediction and coping with missing packets and closed-form optimal control in the lifted subspace. Simulation results corroborate that the proposed approach achieves a 38x lower mean squared control error at 0 dBm signal-to-noise ratio (SNR) than the non-predictive baseline.