论文标题
长范围内风险运动计划:一种模型预测的方法
Long Horizon Risk-Averse Motion Planning: a Model-Predictive Approach
论文作者
论文摘要
开发可以主动,安全且在混合交通中舒适的安全自动化车辆需要改进的规划方法,这些方法是规避风险的,可以预测其他道路使用者的运动。为了考虑这些标准,在本文中,我们提出了一种非线性模型预测性轨迹生成器方案,该方案将车辆的纵向和横向运动结合起来,以最小的风险转向车辆,同时朝着目标状态发展。提出的方法考虑了基础架构,周围的对象以及对物体状态的预测,该状态通过模型预测性控制(MPC)问题的成本函数中包含的人造潜在风险字段(MPC)问题。该轨迹发生器可以实现预期的操作,即在需要任何安全关键干预之前降低风险。该方法在代表高速公路和城市情况的几个案例研究中得到了证明。结果表明,在证明其实时适用性的同时,MPC轨迹生成器的安全有效实现。
Developing safe automated vehicles that can be proactive, safe, and comfortable in mixed traffic requires improved planning methods that are risk-averse and that account for predictions of the motion of other road users. To consider these criteria, in this article, we propose a non-linear model-predictive trajectory generator scheme, which couples the longitudinal and lateral motion of the vehicle to steer the vehicle with minimal risk, while progressing towards the goal state. The proposed method takes into account the infrastructure, surrounding objects, and predictions of the objects' state through artificial potential-based risk fields included in the cost function of the model-predictive control (MPC) problem. This trajectory generator enables anticipatory maneuvers, i.e., mitigating risk far before any safety-critical intervention would be necessary. The method is proven in several case studies representing both highways- and urban situations. The results show the safe and efficient implementation of the MPC trajectory generator while proving its real-time applicability.