论文标题

关于生成行为树和机器人应用有限状态机所需的编程工作

On the programming effort required to generate Behavior Trees and Finite State Machines for robotic applications

论文作者

Iovino, Matteo, Förster, Julian, Falco, Pietro, Chung, Jen Jen, Siegwart, Roland, Smith, Christian

论文摘要

在本文中,我们提供了一个实用的证明,即与有限状态机器(FSM)相比,行为树(BT)中的模块化如何减少编程机器人任务的努力。近年来,代表控制自治药物的任务计划的方式已从标准FSM转移到BTS。与标准方法相比,文献中的许多作品都强调并证明了这种设计的好处,尤其是在模块化,反应性和人类可读性方面。但是,这些作品通常无法在实施这些政策以及修改它们所需的编程工作中提供切实的比较。这是许多机器人应用中的相关方面,在许多机器人应用中,设计选择是由政策的鲁棒性和对其进行编程所需的时间来决定的。在这项工作中,我们通过评估修改它们的成本来比较向后链的BT和FSM的耐故障设计。我们在模拟环境中通过一组实验来验证分析,其中移动操纵器可以解决项目提取任务。

In this paper we provide a practical demonstration of how the modularity in a Behavior Tree (BT) decreases the effort in programming a robot task when compared to a Finite State Machine (FSM). In recent years the way to represent a task plan to control an autonomous agent has been shifting from the standard FSM towards BTs. Many works in the literature have highlighted and proven the benefits of such design compared to standard approaches, especially in terms of modularity, reactivity and human readability. However, these works have often failed in providing a tangible comparison in the implementation of those policies and the programming effort required to modify them. This is a relevant aspect in many robotic applications, where the design choice is dictated both by the robustness of the policy and by the time required to program it. In this work, we compare backward chained BTs with a fault-tolerant design of FSMs by evaluating the cost to modify them. We validate the analysis with a set of experiments in a simulation environment where a mobile manipulator solves an item fetching task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源