论文标题
用于多任务学习和边际查询的私人合成数据
Private Synthetic Data for Multitask Learning and Marginal Queries
论文作者
论文摘要
我们提供了一种差异化的私有算法,用于同时生成多个任务的合成数据:边际查询和多任务机器学习(ML)。我们算法中的一个关键创新是能够直接处理数值特征的能力,与许多相关的先验方法相比,这些方法需要首先通过{binning策略}将数值特征转换为{高基数}分类特征。为了提高准确性,需要较高的分子粒度,但这会对可扩展性产生负面影响。消除对套在一起的需求使我们能够产生合成数据,以保留大量统计查询,例如数值特征的边际和条件线性阈值查询。保留后者意味着在特定半空间上方的每个类标记的点的比例在实际数据和合成数据中大致相同。这是在多任务设置中训练线性分类器所需的属性。我们的算法还使我们能够为混合边缘查询的高质量合成数据,这些数据结合了分类和数值特征。我们的方法始终比最佳的可比较技术快2-5倍,并且在边缘查询和混合型数据集的线性预测任务方面提供了显着的准确性改进。
We provide a differentially private algorithm for producing synthetic data simultaneously useful for multiple tasks: marginal queries and multitask machine learning (ML). A key innovation in our algorithm is the ability to directly handle numerical features, in contrast to a number of related prior approaches which require numerical features to be first converted into {high cardinality} categorical features via {a binning strategy}. Higher binning granularity is required for better accuracy, but this negatively impacts scalability. Eliminating the need for binning allows us to produce synthetic data preserving large numbers of statistical queries such as marginals on numerical features, and class conditional linear threshold queries. Preserving the latter means that the fraction of points of each class label above a particular half-space is roughly the same in both the real and synthetic data. This is the property that is needed to train a linear classifier in a multitask setting. Our algorithm also allows us to produce high quality synthetic data for mixed marginal queries, that combine both categorical and numerical features. Our method consistently runs 2-5x faster than the best comparable techniques, and provides significant accuracy improvements in both marginal queries and linear prediction tasks for mixed-type datasets.