论文标题

人工神经网络的统计过程监测

Statistical process monitoring of artificial neural networks

论文作者

Malinovskaya, Anna, Mozharovskyi, Pavlo, Otto, Philipp

论文摘要

基于人工智能的模型的快速发展需要创新的监视技术,这些技术可以以低计算成本实时运行。在机器学习中,尤其是如果我们考虑人工神经网络(ANN),这些模型通常经过监督的方式进行培训。因此,在模型的部署过程中,输入和输出之间的学习关系必须保持有效。如果存在这种平稳性假设,我们可以得出结论,ANN提供了准确的预测。否则,需要对模型的重建或重建。我们建议考虑ANN生成的数据的潜在特征表示(称为“嵌入”),以确定数据流开始为非平稳的时间。特别是,我们通过根据数据深度计算和归一化等级应用多元控制图来监视嵌入。将引入方法的性能与各种ANN体系结构和不同潜在数据格式的基准方法进行了比较。

The rapid advancement of models based on artificial intelligence demands innovative monitoring techniques which can operate in real time with low computational costs. In machine learning, especially if we consider artificial neural networks (ANNs), the models are often trained in a supervised manner. Consequently, the learned relationship between the input and the output must remain valid during the model's deployment. If this stationarity assumption holds, we can conclude that the ANN provides accurate predictions. Otherwise, the retraining or rebuilding of the model is required. We propose considering the latent feature representation of the data (called "embedding") generated by the ANN to determine the time when the data stream starts being nonstationary. In particular, we monitor embeddings by applying multivariate control charts based on the data depth calculation and normalized ranks. The performance of the introduced method is compared with benchmark approaches for various ANN architectures and different underlying data formats.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源