论文标题

基于周期的姿势图优化的增量循环基础

Incremental cycle bases for cycle-based pose graph optimization

论文作者

Forsgren, Brendon, Brink, Kevin, Ganesh, Prashant, McLain, Timothy

论文摘要

姿势图优化是同时定位和映射问题的一种特殊情况,其中唯一要估计的变量是姿势变量,而唯一的测量值是姿势间约束。绝大多数姿势图优化技术是基于顶点的(变量是机器人姿势),但是最近的工作以相对方式(变量是姿势之间的变换)参数化了姿势图优化问题,该问题利用最小循环基础来最大程度地提高问题的稀疏性。我们以增量方式探索周期基础的构建,同时最大程度地提高稀疏性。我们验证一种算法,该算法逐渐构建稀疏的循环基础,并将其性能与最小循环基础进行比较。此外,我们提出了一种算法,以近似两个图表的最小周期基础,这些图在多代理方案中常见。最后,姿势图优化的相对参数化仅限于使用SE(2)或SE(3)上的刚体变换作为姿势之间的约束。我们引入了一种方法,以便在相对姿势图优化问题中使用低度测量值。我们对标准基准,模拟数据集和自定义硬件的算法进行了广泛的验证。

Pose graph optimization is a special case of the simultaneous localization and mapping problem where the only variables to be estimated are pose variables and the only measurements are inter-pose constraints. The vast majority of pose graph optimization techniques are vertex based (variables are robot poses), but recent work has parameterized the pose graph optimization problem in a relative fashion (variables are the transformations between poses) that utilizes a minimum cycle basis to maximize the sparsity of the problem. We explore the construction of a cycle basis in an incremental manner while maximizing the sparsity. We validate an algorithm that constructs a sparse cycle basis incrementally and compare its performance with a minimum cycle basis. Additionally, we present an algorithm to approximate the minimum cycle basis of two graphs that are sparsely connected as is common in multi-agent scenarios. Lastly, the relative parameterization of pose graph optimization has been limited to using rigid body transforms on SE(2) or SE(3) as the constraints between poses. We introduce a methodology to allow for the use of lower-degree-of-freedom measurements in the relative pose graph optimization problem. We provide extensive validation of our algorithms on standard benchmarks, simulated datasets, and custom hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源