论文标题

Hadamard产品的神经网的外推和光谱偏置:一项多项式网研究

Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study

论文作者

Wu, Yongtao, Zhu, Zhenyu, Liu, Fanghui, Chrysos, Grigorios G, Cevher, Volkan

论文摘要

神经切线内核(NTK)是分析神经网络及其概括界限的训练动力学的强大工具。关于NTK的研究已致力于典型的神经网络体系结构,但是对于Hadamard产品(NNS-HP)的神经网络来说,这是不完整的,例如StyleGAN和POLYENORIAL神经网络(PNNS)。在这项工作中,我们为特殊类别的NNS-HP(即多项式神经网络)得出了有限宽度的NTK公式。我们证明了它们与关联的NTK与内核回归预测变量的等效性,该预测扩大了NTK的应用范围。根据我们的结果,我们阐明了针对外推和光谱偏置,PNN在标准神经网络上的分离。我们的两个关键见解是,与标准神经网络相比,PNN可以符合外推体制中更复杂的功能,并承认相应NTK的特征值衰减较慢,从而使对高频功能的学习更快。此外,我们的理论结果可以扩展到其他类型的NNS-HP,从而扩大了我们工作的范围。我们的经验结果验证了更广泛的NNS-HP类别的分离,这为对神经体系结构有了更深入的理解提供了良好的理由。

Neural tangent kernel (NTK) is a powerful tool to analyze training dynamics of neural networks and their generalization bounds. The study on NTK has been devoted to typical neural network architectures, but it is incomplete for neural networks with Hadamard products (NNs-Hp), e.g., StyleGAN and polynomial neural networks (PNNs). In this work, we derive the finite-width NTK formulation for a special class of NNs-Hp, i.e., polynomial neural networks. We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK. Based on our results, we elucidate the separation of PNNs over standard neural networks with respect to extrapolation and spectral bias. Our two key insights are that when compared to standard neural networks, PNNs can fit more complicated functions in the extrapolation regime and admit a slower eigenvalue decay of the respective NTK, leading to a faster learning towards high-frequency functions. Besides, our theoretical results can be extended to other types of NNs-Hp, which expand the scope of our work. Our empirical results validate the separations in broader classes of NNs-Hp, which provide a good justification for a deeper understanding of neural architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源