论文标题

浸入完整波形反演的边界参数化

Immersed boundary parametrizations for full waveform inversion

论文作者

Bürchner, Tim, Kopp, Philipp, Kollmannsberger, Stefan, Rank, Ernst

论文摘要

完整的波形反演(FWI)是一种成功且建立了良好的逆方法,用于从测量的波浪信号重建材料模型。在地震探索领域,FWI在重建平稳变化的物质偏差方面已被证明特别成功。相反,非破坏性测试(NDT)通常需要检测和规范样品中的尖锐缺陷。如果材料之间的对比度很低,则FWI也可以成功应用于这些问题。但是,到目前为止,该方法并不完全适合图像缺陷,例如voids,其特征是材料参数的高对比度。在本文中,我们引入了一个无量纲的缩放函数$γ$,以模拟前向标量和反向标量方程问题中的空隙。根据该功能$γ$量表的材料参数,提出了不同的建模方法,从而导致三种单参数FWI的公式和一种两参数FWI的配方。通过一阶优化解决了结果问题,其中梯度是通过AJDoint状态方法计算的。对于每种方法,都会得出相应的Fréchet内核,并使用L-BFGS算法进行相关的最小化。不同方法之间的比较表明,用$γ$缩放密度对于在正向和反问题中的参数化空隙最有前途。最后,为了考虑已知的任意复杂几何形状,该方法与浸没的边界方法(有限的细胞法(FCM))结合使用。

Full Waveform Inversion (FWI) is a successful and well-established inverse method for reconstructing material models from measured wave signals. In the field of seismic exploration, FWI has proven particularly successful in the reconstruction of smoothly varying material deviations. In contrast, non-destructive testing (NDT) often requires the detection and specification of sharp defects in a specimen. If the contrast between materials is low, FWI can be successfully applied to these problems as well. However, so far the method is not fully suitable to image defects such as voids, which are characterized by a high contrast in the material parameters. In this paper, we introduce a dimensionless scaling function $γ$ to model voids in the forward and inverse scalar wave equation problem. Depending on which material parameters this function $γ$ scales, different modeling approaches are presented, leading to three formulations of mono-parameter FWI and one formulation of two-parameter FWI. The resulting problems are solved by first-order optimization, where the gradient is computed by an ajdoint state method. The corresponding Fréchet kernels are derived for each approach and the associated minimization is performed using an L-BFGS algorithm. A comparison between the different approaches shows that scaling the density with $γ$ is most promising for parameterizing voids in the forward and inverse problem. Finally, in order to consider arbitrary complex geometries known a priori, this approach is combined with an immersed boundary method, the finite cell method (FCM).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源