论文标题
通过自我监督的对抗性模仿未标记的混合动作,多功能技能控制
Versatile Skill Control via Self-supervised Adversarial Imitation of Unlabeled Mixed Motions
论文作者
论文摘要
学习多样化的技能是机器人技术的主要挑战之一。为此,模仿学习方法取得了令人印象深刻的结果。这些方法需要明确标记的数据集或假设一致的技能执行,以使学习和积极控制单个行为,从而限制其适用性。在这项工作中,我们提出了一种合作的对抗方法,用于从未标记的数据集中获得可控技能的单一多功能策略,这些数据集包含各种状态过渡模式,通过最大化其可区分性。此外,我们表明,通过在生成的对抗性模仿学习框架中利用无监督的技能发现,随着成功的任务实现而出现了新颖和有用的技能。最后,在示威中编码的各种技能的忠实复制中,对获得的多功能政策进行了测试,并呈现了忠实的复制。
Learning diverse skills is one of the main challenges in robotics. To this end, imitation learning approaches have achieved impressive results. These methods require explicitly labeled datasets or assume consistent skill execution to enable learning and active control of individual behaviors, which limits their applicability. In this work, we propose a cooperative adversarial method for obtaining single versatile policies with controllable skill sets from unlabeled datasets containing diverse state transition patterns by maximizing their discriminability. Moreover, we show that by utilizing unsupervised skill discovery in the generative adversarial imitation learning framework, novel and useful skills emerge with successful task fulfillment. Finally, the obtained versatile policies are tested on an agile quadruped robot called Solo 8 and present faithful replications of diverse skills encoded in the demonstrations.