论文标题

Imitrob:模仿学习数据集用于培训和评估6D对象姿势估计器

Imitrob: Imitation Learning Dataset for Training and Evaluating 6D Object Pose Estimators

论文作者

Sedlar, Jiri, Stepanova, Karla, Skoviera, Radoslav, Behrens, Jan K., Tuna, Matus, Sejnova, Gabriela, Sivic, Josef, Babuska, Robert

论文摘要

本文介绍了一个用于培训和评估方法的数据集,以估算由标准RGB摄像机捕获的任务演示中手持工具的6D姿势。尽管6D姿势估计方法取得了重大进展,但它们的性能通常受到严重遮挡的对象的限制,这在模仿学习中是一个常见的情况,在该对象中,该对象通常被操纵的手部分遮住。当前,缺乏数据集可以使这些条件的强大6D姿势估计方法开发。为了克服这个问题,我们收集了一个新的数据集(IMITROB),该数据集针对模仿学习和其他人类持有工具并执行任务的其他应用中的6D姿势估计。该数据集包含九种不同工具和十二个操纵任务的图像序列,其中有两个相机观点,四个人类主题以及左/右手。每个图像都伴随着由HTC Vive运动跟踪设备获得的6D对象姿势的准确地面真实测量。通过训练和评估各种设置中的最新6D对象估计方法(DOPE)来证明数据集的使用。

This paper introduces a dataset for training and evaluating methods for 6D pose estimation of hand-held tools in task demonstrations captured by a standard RGB camera. Despite the significant progress of 6D pose estimation methods, their performance is usually limited for heavily occluded objects, which is a common case in imitation learning, where the object is typically partially occluded by the manipulating hand. Currently, there is a lack of datasets that would enable the development of robust 6D pose estimation methods for these conditions. To overcome this problem, we collect a new dataset (Imitrob) aimed at 6D pose estimation in imitation learning and other applications where a human holds a tool and performs a task. The dataset contains image sequences of nine different tools and twelve manipulation tasks with two camera viewpoints, four human subjects, and left/right hand. Each image is accompanied by an accurate ground truth measurement of the 6D object pose obtained by the HTC Vive motion tracking device. The use of the dataset is demonstrated by training and evaluating a recent 6D object pose estimation method (DOPE) in various setups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源