论文标题

探索整个稀疏决策树的整个Rashomon

Exploring the Whole Rashomon Set of Sparse Decision Trees

论文作者

Xin, Rui, Zhong, Chudi, Chen, Zhi, Takagi, Takuya, Seltzer, Margo, Rudin, Cynthia

论文摘要

在任何给定的机器学习问题中,可能有许多模型可以很好地解释数据。但是,大多数学习算法仅返回这些模型中的一种,使从业者没有实用的方法来探索替代模型,这些模型可能具有超出损失函数内表达的理想属性。 Rashomon集是所有这些几乎最佳模型的集合。 Rashomon集可能非常复杂,尤其是对于高度非线性函数类别,允许复杂的交互项,例如决策树。我们提供了第一种完全列举稀疏决策树的Rashomon设置的技术;实际上,我们的工作提供了针对高度非线性离散函数类别的非平凡问题的所有Rashomon设置的第一个完整枚举。这使用户可以在所有近似同样好的模型中对模型选择的前所未有的控制水平。我们在专门的数据结构中表示Rashomon集,该数据结构支持有效的查询和采样。我们展示了Rashomon集的三个应用:1)可用于研究几乎最佳树木集的可变重要性(与一棵树相反),2)rashomon设置的精确度可以使Rashomon集合列出平衡的精度和F1分数的平衡集,以及用于制作RASHOM集合设置的RASHOMON设置的均可用来构建RASHOM,以构建RASHOM集合。因此,我们能够检查带有新镜头问题的Rashomon集合,使用户能够选择模型,而不是仅仅由仅产生单个模型的算法的摆布。

In any given machine learning problem, there may be many models that could explain the data almost equally well. However, most learning algorithms return only one of these models, leaving practitioners with no practical way to explore alternative models that might have desirable properties beyond what could be expressed within a loss function. The Rashomon set is the set of these all almost-optimal models. Rashomon sets can be extremely complicated, particularly for highly nonlinear function classes that allow complex interaction terms, such as decision trees. We provide the first technique for completely enumerating the Rashomon set for sparse decision trees; in fact, our work provides the first complete enumeration of any Rashomon set for a non-trivial problem with a highly nonlinear discrete function class. This allows the user an unprecedented level of control over model choice among all models that are approximately equally good. We represent the Rashomon set in a specialized data structure that supports efficient querying and sampling. We show three applications of the Rashomon set: 1) it can be used to study variable importance for the set of almost-optimal trees (as opposed to a single tree), 2) the Rashomon set for accuracy enables enumeration of the Rashomon sets for balanced accuracy and F1-score, and 3) the Rashomon set for a full dataset can be used to produce Rashomon sets constructed with only subsets of the data set. Thus, we are able to examine Rashomon sets across problems with a new lens, enabling users to choose models rather than be at the mercy of an algorithm that produces only a single model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源