论文标题

泰特·夏法雷奇组的任意大型$ p $ torsion

Arbitrarily large $p$-torsion in Tate-Shafarevich groups

论文作者

Flynn, E. Victor, Shnidman, Ari

论文摘要

我们表明,对于任何Prime $ p $,在其Tate-Shafarevich组中都有$ \ Mathbb {Q} $的绝对简单的Abelian品种,其任意大的$ P $ torsion。为了证明这一点,我们构建了$ y^p = x(x-a)$的jacobians的显式$μ_p$ - 违反了Hasse原理。在附录中,汤姆·费舍尔(Tom Fisher)解释了如何用纸牌配对来解释我们的证明。

We show that, for any prime $p$, there exist absolutely simple abelian varieties over $\mathbb{Q}$ with arbitrarily large $p$-torsion in their Tate-Shafarevich group. To prove this, we construct explicit $μ_p$-covers of Jacobians of the form $y^p = x(x-1)(x-a)$ which violate the Hasse principle. In the appendix, Tom Fisher explains how to interpret our proof in terms of a Cassels-Tate pairing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源