论文标题

Fluto:使用神经网络优化分级的多尺度拓扑优化

FluTO: Graded Multiscale Fluid Topology Optimization using Neural Networks

论文作者

Padhy, Rahul Kumar, Chandrasekhar, Aaditya, Suresh, Krishnan

论文摘要

在许多应用中,耗散较低但高接触面积的流体流量设备很重要。设计此类设备的众所周知的策略是多尺度拓扑优化(MTO),其中在每个离散域的每个单元格中设计了最佳的微观结构。不幸的是,MTO在计算上非常昂贵,因为在同质化过程的每个步骤中,必须对不断发展的微观结构进行均质化。作为替代方案,我们在这里提出了用于设计流体流量设备的分级多尺寸拓扑优化(GMTO)。在提出的方法中,使用了几种预选但大小的参数化和定向的微观结构来最佳填充域。 GMTO显着降低了计算,同时保留了MTO的许多好处。 特别是,此处使用神经网络(NN)实施GMTO,因为:(1)可以离线执行均质化,并在优化过程中使用NN使用,(2)它可以在优化过程中进行微观结构之间的连续切换,(3)设计变量和计算工作的数量和计算工作的数量是独立于使用的微观结构的数量。提出了几个数值结果,以说明所提出的框架。

Fluid-flow devices with low dissipation, but high contact area, are of importance in many applications. A well-known strategy to design such devices is multi-scale topology optimization (MTO), where optimal microstructures are designed within each cell of a discretized domain. Unfortunately, MTO is computationally very expensive since one must perform homogenization of the evolving microstructures, during each step of the homogenization process. As an alternate, we propose here a graded multiscale topology optimization (GMTO) for designing fluid-flow devices. In the proposed method, several pre-selected but size-parameterized and orientable microstructures are used to fill the domain optimally. GMTO significantly reduces the computation while retaining many of the benefits of MTO. In particular, GMTO is implemented here using a neural-network (NN) since: (1) homogenization can be performed off-line, and used by the NN during optimization, (2) it enables continuous switching between microstructures during optimization, (3) the number of design variables and computational effort is independent of number of microstructure used, and, (4) it supports automatic differentiation, thereby eliminating manual sensitivity analysis. Several numerical results are presented to illustrate the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源