论文标题

通过bruhat-tits理论的参数化未经托里的共轭类别

Parameterizing Conjugacy Classes of Unramified Tori via Bruhat-Tits Theory

论文作者

DeBacker, Stephen

论文摘要

假设$ k $是一个非架构的本地字段,$ k $是$ k $的最大不合格的扩展名,而$ \ mathbf {g} $是连接的还原$ k $ -group。在本文中,我们通过Bruhat-tits理论提供参数化:$ \ Mathbf {g} $的$ k $ -tori的理性共轭类,分裂在$ k $上; $ \ mathbf {g} $的未受到扭曲的Levi子组的$ K $ -SPLIT组件的理性和稳定共轭类;以及$ \ mathbf {g} $的未经扭曲的广义Levi子组的理性共轭类。我们还为有限的谎言类型组提供了类似对象的参数化。

Suppose $k$ is a nonarchimedean local field, $K$ is a maximally unramified extension of $k$, and $\mathbf{G}$ is a connected reductive $k$-group. In this paper we provide parameterizations via Bruhat-Tits theory of: the rational conjugacy classes of $k$-tori in $\mathbf{G}$ that split over $K$; the rational and stable conjugacy classes of the $K$-split components of the centers of unramified twisted Levi subgroups of $\mathbf{G}$; and the rational conjugacy classes of unramified twisted generalized Levi subgroups of $\mathbf{G}$. We also provide parameterizations of analogous objects for finite groups of Lie type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源