论文标题

重新访问滚动百叶窗束调整:朝着准确而快速的解决方案

Revisiting Rolling Shutter Bundle Adjustment: Toward Accurate and Fast Solution

论文作者

Liao, Bangyan, Qu, Delin, Xue, Yifei, Zhang, Huiqing, Lao, Yizhen

论文摘要

我们提出了一种健壮而快速的捆绑调整解决方案,该解决方案估算了基于滚动快门(RS)摄像头的测量值的摄像机的6多杆姿势和环境的几何形状。这解决了现有作品中的挑战,即依靠其他传感器,高帧速率视频作为输入,对摄像机运动的限制性假设,读出方向和效率低下。为此,我们首先研究了归一化对图像点对RSBA性能的影响,并在建模真正的6-DOF摄像机运动时显示了更好的近似值。然后,我们为视觉残差协方差提出了一种新的分析模型,该模型可用于在优化过程中标准化再投影误差,从而提高了整体准确性。更重要的是,RSBA(NW-RSBA)中归一化和协方差标准化加权的结合可以避免常见的平面退化,而无需限制拍摄方式。此外,我们根据其雅各布矩阵和舒尔补充的稀疏性提出了NW-RSBA的加速策略。广泛的合成和真实数据实验验证了拟议解决方案对最先进作品的有效性和效率。我们还证明了所提出的方法可以轻松实施,并作为完成的RSSFM和RSSLAM解决方案插入著名的GSSFM和GSSLAM系统。

We propose a robust and fast bundle adjustment solution that estimates the 6-DoF pose of the camera and the geometry of the environment based on measurements from a rolling shutter (RS) camera. This tackles the challenges in the existing works, namely relying on additional sensors, high frame rate video as input, restrictive assumptions on camera motion, readout direction, and poor efficiency. To this end, we first investigate the influence of normalization to the image point on RSBA performance and show its better approximation in modelling the real 6-DoF camera motion. Then we present a novel analytical model for the visual residual covariance, which can be used to standardize the reprojection error during the optimization, consequently improving the overall accuracy. More importantly, the combination of normalization and covariance standardization weighting in RSBA (NW-RSBA) can avoid common planar degeneracy without needing to constrain the filming manner. Besides, we propose an acceleration strategy for NW-RSBA based on the sparsity of its Jacobian matrix and Schur complement. The extensive synthetic and real data experiments verify the effectiveness and efficiency of the proposed solution over the state-of-the-art works. We also demonstrate the proposed method can be easily implemented and plug-in famous GSSfM and GSSLAM systems as completed RSSfM and RSSLAM solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源