论文标题
巧克力曲奇型号:圆盘星系的灰尘几何形状
The Chocolate Chip Cookie Model: Dust Geometry of Milky-Way like Disk Galaxies
论文作者
论文摘要
我们提出了一种新的两部分尘埃几何模型,即\ textit {巧克力曲奇}型号,其中块状的固有区域嵌入了弥漫性恒星/ISM磁盘中,例如饼干中的巧克力片。通过近似具有连续高斯分布并省略尘埃散射效应的块状螺状区域的二项式分布,我们的模型通过分析方法解决了发射线和出色连续的尘埃衰减过程。我们的巧克力曲奇模型成功地符合从恒星种群合成中得出的恒星成分的有效灰尘呈现的倾向依赖性,以及从Balmer降低的乳白色样本(如圆盘星系)所选择的,从Sloan Digital Sky Survey(SDSS)中选择的大型圆盘星系(SDSS)所选择的发射线。我们的模型表明,块状的静脉磁盘的薄度约为0.55倍,比恒星磁盘大约1.6倍,而恒星磁盘的类似MW状的星系,而每个块状区域具有典型的光学深度$τ_ {\ rm {cl,v}}} \ sim 0.5 $ in $ v $ band $ v $ band。在考虑了孔径效应之后,我们对灰尘衰减倾斜度依赖性的模型预测也与观察结果一致。不仅如此,在我们的模型中,恒星种群的尘埃衰减曲线自然取决于倾向,其中位数与经典的Calzetti法律一致。由于建模限制来自光波长,因此我们的模型不受光学厚的灰尘成分的影响,但是,这可能会偏向模型对红外排放的预测。
We present a new two-component dust geometry model, the \textit{Chocolate Chip Cookie} model, where the clumpy nebular regions are embedded in a diffuse stellar/ISM disk, like chocolate chips in a cookie. By approximating the binomial distribution of the clumpy nebular regions with a continuous Gaussian distribution and omitting the dust scattering effect, our model solves the dust attenuation process for both the emission lines and stellar continua via analytical approaches. Our Chocolate Chip Cookie model successfully fits the inclination dependence of both the effective dust reddening of the stellar components derived from stellar population synthesis and that of the emission lines characterized by the Balmer decrement for a large sample of Milky-Way like disk galaxies selected from the main galaxy sample of the Sloan Digital Sky Survey (SDSS). Our model shows that the clumpy nebular disk is about 0.55 times thinner and 1.6 times larger than the stellar disk for MW-like galaxies, whereas each clumpy region has a typical optical depth $τ_{\rm{cl,V}} \sim 0.5$ in $V$ band. After considering the aperture effect, our model prediction on the inclination dependence of dust attenuation is also consistent with observations. Not only that, in our model, the dust attenuation curve of the stellar population naturally depends on inclination and its median case is consistent with the classical Calzetti law. Since the modelling constraints are from the optical wavelengths, our model is unaffected by the optically thick dust component, which however could bias the model's prediction of the infrared emissions.