论文标题

通过二维材料中的声子对单声子的量子传感

Quantum Sensing of Single Phonons via Phonon Drag in Two-Dimensional Materials

论文作者

Kefayati, Ali, Bird, Jonathan P., Perebeinos, Vasili

论文摘要

最终在单声子极限处进行电气检测声子的能力是许多基于声音的量子计算,所谓的量子语音的关键要求。在这里,我们预测,通过利用其电子与表面极式声子的强耦合,Van der waals异质结构可以为声子传感提供合适的平台,能够在单个光子节水平上解决能量传递。我们认为的几何形状是通过在石墨烯层中的电子上施加阻力动量的一种,该几何形状是通过六角形硝化硼介电层中的单个平衡的声子施加的,从而产生了可测量的诱导电压($ v _ {\ rm drag} $)。我们对Boltzmann传输方程的数值解决方案表明,该阻力电压可以达到每个声子几百微伏的水平,远高于实验检测极限。此外,我们预测$ v _ {\ rm drag} $应该对石墨烯层中载体的移动性高度不敏感,并将温度提高至至少300 K,从而为单次传感传感提供了多功能材料平台的潜力。

The capacity to electrically detect phonons, ultimately at the single-phonon limit, is a key requirement for many schemes for phonon-based quantum computing, so-called quantum phononics. Here, we predict that by exploiting the strong coupling of their electrons to surface-polar phonons, van der Waals heterostructures can offer a suitable platform for phonon sensing, capable of resolving energy transfer at the single-phonon level. The geometry we consider is one in which a drag momentum is exerted on electrons in a graphene layer, by a single out-of-equilibrium phonon in a dielectric layer of hexagonal boron nitride, giving rise to a measurable induced voltage ($V_{\rm drag}$). Our numerical solution of the Boltzmann Transport Equation shows that this drag voltage can reach a level of a few hundred microvolts per phonon, well above experimental detection limits. Furthermore, we predict that $V_{\rm drag}$ should be highly insensitive to the mobility of carriers in the graphene layer and to increasing the temperature to at least 300 K, offering the potential of a versatile material platform for single-phonon sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源