论文标题
指数家族的后验正常近似
Normal approximation for the posterior in exponential families
论文作者
论文摘要
在本文中,我们在具有任意核心和缩放的指数族模型中,在指数式的家庭模型中,在正常近似值上获得了定量,非反应和数据依赖性\ textit {bernstein-von mises type}界限。我们的边界在总变化和瓦斯恒星距离中所述,对单变量和多元后倍数都是有效的,并且不需要共轭事先设置。它们是通过Stein对操作员进行比较的精致版本获得的,该方法允许在高维设置中改善维度依赖性,并且在其他问题中也可能引起人们的关注。我们的方法相当灵活,在某些设置中,允许收敛速率的边界比通常的\(n^{ - 1/2})\)速率(当\(n \)是样本大小)。我们说明了有关各种指数家庭分布的发现,包括Weibull,多项式和线性回归,并具有未知的方差。所得的边界对样品中数据的足够统计数据具有明确的依赖性,因此提供了有关这些因素如何影响正常近似质量的洞察力。我们示例中的见解包括识别bernoulli数据发生的速度\(n^{ - 1})\)收敛速率的条件,这是对标准化的选择如何影响正常近似值的质量,以及高维设置中的尺寸依赖性。
In this paper, we obtain quantitative, non-asymptotic, and data-dependent \textit{Bernstein-von Mises type} bounds on the normal approximation of the posterior distribution in exponential family models with arbitrary centring and scaling. Our bounds, stated in the total variation and Wasserstein distances, are valid for univariate and multivariate posteriors alike, and do not require a conjugate prior setting. They are obtained through a refined version of Stein's method of comparison of operators that allows for improved dimensional dependence in high-dimensional settings and may also be of interest in other problems. Our approach is rather flexible and, in certain settings, allows for the derivation of bounds with rates of convergence faster than the usual \( O(n^{-1/2}) \) rate (when \( n \) is the sample size). We illustrate our findings on a variety of exponential family distributions, including the Weibull, multinomial, and linear regression with unknown variance. The resulting bounds have an explicit dependence on the prior distribution and on sufficient statistics of the data from the sample, and thus provide insight into how these factors affect the quality of the normal approximation. Insights from our examples include identification of conditions under which faster \( O(n^{-1}) \) convergence rates occur for Bernoulli data, illustrations of how the quality of the normal approximation is influenced by the choice of standardisation, and dimensional dependence in high-dimensional settings.