论文标题
通过元学习来学习符号模型不足的损失函数
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
论文作者
论文摘要
在本文中,我们开发了损失功能学习的新兴主题,该主题旨在学习损失功能,从而显着提高在其下方训练的模型的性能。具体而言,我们提出了一个新的元学习框架,用于通过混合神经符号搜索方法来学习模型 - 不足的损失函数。该框架首先使用基于进化的方法来搜索原始数学操作的空间,以找到一组符号损失函数。其次,随后通过基于端到端梯度的训练程序对学习的损失功能集进行了参数化和优化。拟议框架的多功能性在各种监督的学习任务上得到了经验验证。结果表明,在各种神经网络体系结构和数据集上,新提出的方法发现的元学习损失函数均优于跨膜片损失和最新的损失函数学习方法。
In this paper, we develop upon the emerging topic of loss function learning, which aims to learn loss functions that significantly improve the performance of the models trained under them. Specifically, we propose a new meta-learning framework for learning model-agnostic loss functions via a hybrid neuro-symbolic search approach. The framework first uses evolution-based methods to search the space of primitive mathematical operations to find a set of symbolic loss functions. Second, the set of learned loss functions are subsequently parameterized and optimized via an end-to-end gradient-based training procedure. The versatility of the proposed framework is empirically validated on a diverse set of supervised learning tasks. Results show that the meta-learned loss functions discovered by the newly proposed method outperform both the cross-entropy loss and state-of-the-art loss function learning methods on a diverse range of neural network architectures and datasets.