论文标题

随机系统的数据驱动输出预测和控制:一种基于创新的方法

Data-Driven Output Prediction and Control of Stochastic Systems: An Innovation-Based Approach

论文作者

Wang, Yibo, You, Keyou, Huang, Dexian, Shang, Chao

论文摘要

近年来,人们对动态系统的数据驱动控制引起了人们的兴趣。但是,隐式数据驱动的输出预测变量很容易受到不确定性的影响,例如过程干扰和测量噪声,导致不可靠的预测和意外的控制动作。在此简介中,我们提出了一种新的数据驱动方法来输出随机线性时间流动(LTI)系统的预测。通过利用创新形式,随机LTI系统中的不确定性是重新铸造的,因为创新可以从输入输出数据中很容易估算而不知道系统矩阵。通过这种方式,通过将基本引理应用于创新形式,我们提出了一个新的基于创新的随机LTI系统的基于创新的输出预测指标(OP),该系统绕开了明确识别状态空间矩阵并构建状态估计器的需求。在轻度条件下建立了闭环第二阶段预测误差的界限。提出的数据驱动的OP可以集成到最佳控制设计中,以提高性能。数值模拟证明了在现有配方中,基于创新的方法的基于创新的方法的表现要出色。

Recent years have witnessed a booming interest in data-driven control of dynamical systems. However, the implicit data-driven output predictors are vulnerable to uncertainty such as process disturbance and measurement noise, causing unreliable predictions and unexpected control actions. In this brief, we put forward a new data-driven approach to output prediction of stochastic linear time-invariant (LTI) systems. By utilizing the innovation form, the uncertainty in stochastic LTI systems is recast as innovations that can be readily estimated from input-output data without knowing system matrices. In this way, by applying the fundamental lemma to the innovation form, we propose a new innovation-based data-driven output predictor (OP) of stochastic LTI systems, which bypasses the need for identifying state-space matrices explicitly and building a state estimator. The boundedness of the second moment of prediction errors in closed-loop is established under mild conditions. The proposed data-driven OP can be integrated into optimal control design for better performance. Numerical simulations demonstrate the outperformance of the proposed innovation-based methods in output prediction and control design over existing formulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源