论文标题

学习具有相关估值分布的最佳确定性拍卖

Learning Optimal Deterministic Auctions with Correlated Valuation Distributions

论文作者

Huo, Da, Zhang, Zhilin, Zheng, Zhenzhe, Yu, Chuan, Xu, Jian, Wu, Fan

论文摘要

在机理设计中,设计具有一般设置中相关值的最佳拍卖是具有挑战性的。尽管可以进一步利用价值分配以提高收入,但复杂的相关结构使实际上很难获得。由机器学习提供支持的数据驱动的拍卖机制,可以直接从历史拍卖数据设计拍卖,而无需依赖特定的价值分布。在这项工作中,我们设计了一个基于学习的拍卖,该拍卖可以编码值与每个投标人的等级分数的相关性,并进一步调整排名规则以接近最佳收入。我们严格保证通过将游戏理论条件编码为神经网络结构来保证策略策略性。此外,设计的拍卖中的所有操作都可以差异化,以实现端到端的培训范式。实验结果表明,所提出的拍卖机制几乎可以代表任何防止策略拍卖机制,并胜过相关价值设置中疯狂使用的拍卖机制。

In mechanism design, it is challenging to design the optimal auction with correlated values in general settings. Although value distribution can be further exploited to improve revenue, the complex correlation structure makes it hard to acquire in practice. Data-driven auction mechanisms, powered by machine learning, enable to design auctions directly from historical auction data, without relying on specific value distributions. In this work, we design a learning-based auction, which can encode the correlation of values into the rank score of each bidder, and further adjust the ranking rule to approach the optimal revenue. We strictly guarantee the property of strategy-proofness by encoding game theoretical conditions into the neural network structure. Furthermore, all operations in the designed auctions are differentiable to enable an end-to-end training paradigm. Experimental results demonstrate that the proposed auction mechanism can represent almost any strategy-proof auction mechanism, and outperforms the auction mechanisms wildly used in the correlated value settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源