论文标题
通过半渗透屏障扩散的概率模型
A probabilistic model of diffusion through a semi-permeable barrier
论文作者
论文摘要
在物理和生命科学的各种过程中,通过半透明结构扩散。显微镜水平的示例范围从人工膜进行反渗透的膜到调节生物细胞中分子转运的脂质双层到化学和电间隙连接。也有宏观类似物,例如在异质景观中的动物迁移。最近已经显示,通过持续通透性$κ_0$的屏障一维扩散等效于抢断布朗运动(BM)。后者将连续反映的BMS连续缝合在一起,这些回合仅限于屏障的左侧或右侧。当布朗当地时间超过$κ_0$参数的指数随机变量时,每个回合被杀死。然后,新的回合立即以同样的概率沿任一方向启动。在本文中,我们结合了续订理论,拉普拉斯变换和格林的功能方法来展示抢购BM的扩展版本如何提供一个通用的概率框架,以通过半渗透屏障进行建模扩散。这包括从障碍物(例如随机重置)和非马克维亚膜吸收模型的扩散过程的修改,这些模型杀死了每一轮部分反射的BM。后者导致时间依赖于时间的渗透率。
Diffusion through semipermeable structures arises in a wide range of processes in the physical and life sciences. Examples at the microscopic level range from artificial membranes for reverse osmosis to lipid bilayers regulating molecular transport in biological cells to chemical and electrical gap junctions. There are also macroscopic analogs such as animal migration in heterogeneous landscapes. It has recently been shown that one-dimensional diffusion through a barrier with constant permeability $κ_0$ is equivalent to snapping out Brownian motion (BM). The latter sews together successive rounds of partially reflecting BMs that are restricted to either the left or right of the barrier. Each round is killed when its Brownian local time exceeds an exponential random variable parameterized by $κ_0$. A new round is then immediately started in either direction with equal probability. In this paper we use a combination of renewal theory, Laplace transforms and Green's function methods to show how an extended version of snapping out BM provides a general probabilistic framework for modeling diffusion through a semipermeable barrier. This includes modifications of the diffusion process away from the barrier (eg. stochastic resetting) and non-Markovian models of membrane absorption that kill each round of partially reflected BM. The latter leads to time-dependent permeabilities.