论文标题

增强的主教 - 格罗莫夫定理

Enhanced Bishop-Gromov Theorem

论文作者

Brown, Adam R., Freedman, Michael H.

论文摘要

主教Gromov定理在空间中大地球体积的生长速率与RICCI曲率最负的成分有关。在本文中,我们证明了主教格罗莫夫(Gromov)的加强是统一空间。与原始的主教 - 格罗莫夫结合不同,我们增强的结合不仅取决于Ricci曲率的最负分量,还取决于整个光谱。进一步的结果,对于有限体积不均匀的空间,我们证明了在所有起点上的平均地球生长速率上的平均生长速率。该界限比从主教 - 格罗莫夫定理的界限强。我们的证明利用了Raychaudhuri方程,这是一个事实,即测量流程保守了相位空间的体积,也是我们引入的工具,用于研究我们称之为“系数改组”的相关雅各比方程的家族。

The Bishop-Gromov theorem upperbounds the rate of growth of volume of geodesic balls in a space, in terms of the most negative component of the Ricci curvature. In this paper we prove a strengthening of the Bishop-Gromov bound for homogeneous spaces. Unlike the original Bishop-Gromov bound, our enhanced bound depends not only on the most negative component of the Ricci curvature, but on the full spectrum. As a further result, for finite-volume inhomogeneous spaces, we prove an upperbound on the average rate of growth of geodesics, averaged over all starting points; this bound is stronger than the one that follows from the Bishop-Gromov theorem. Our proof makes use of the Raychaudhuri equation, of the fact that geodesic flow conserves phase-space volume, and also of a tool we introduce for studying families of correlated Jacobi equations that we call "coefficient shuffling".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源