论文标题

随机环境中增长率的贝叶斯起源

The Bayesian Origins of Growth Rates in Stochastic Environments

论文作者

Kemp, Jordan T., Bettencourt, Luís M. A.

论文摘要

随机乘法动态表征了许多复杂的自然现象,例如不断发展的人群中的选择和突变,以及社会系统中财富的产生和分配。随机增长率的人口异质性已被证明是多样性动态的关键驱动力和长期尺度上财富不平等的出现。但是,我们仍然缺乏一个一般的统计框架,该框架系统地解释了这些异质性的起源,从适应代理到其环境。在本文中,我们得出了由于代理之间的相互作用及其可知道的环境之间的相互作用而产生的人口增长参数,这是每个代理人收到的主观信号的条件。我们表明,在特定条件下,作为代理信号和环境之间的相互信息,平均增长率会融合其最大值,而顺序的贝叶斯学习是达到最大值的最佳策略。因此,当所有代理使用相同的推理模型访问相同的环境时,学习过程会动态减弱增长率差异,从而逆转异质性对不平等的长期影响。我们的方法为社会和生物学现象的统一普遍定量建模(例如合作的动态效应以及教育对生活历史选择的影响)奠定了基础。

Stochastic multiplicative dynamics characterize many complex natural phenomena such as selection and mutation in evolving populations, and the generation and distribution of wealth within social systems. Population heterogeneity in stochastic growth rates has been shown to be the critical driver of diversity dynamics and of the emergence of wealth inequality over long time scales. However, we still lack a general statistical framework that systematically explains the origins of these heterogeneities from the adaptation of agents to their environment. In this paper, we derive population growth parameters resulting from the interaction between agents and their knowable environment, conditional on subjective signals each agent receives. We show that average growth rates converge, under specific conditions, to their maximal value as the mutual information between the agent's signal and the environment, and that sequential Bayesian learning is the optimal strategy for reaching this maximum. It follows that when all agents access the same environment using the same inference model, the learning process dynamically attenuates growth rate disparities, reversing the long-term effects of heterogeneity on inequality. Our approach lays the foundation for a unified general quantitative modeling of social and biological phenomena such as the dynamical effects of cooperation, and the effects of education on life history choices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源