论文标题

训练感知神经网络的量子电路的参数合成

Parametric Synthesis of Quantum Circuits for Training Perceptron Neural Networks

论文作者

Pronin, Cesar Borisovich, Ostroukh, Andrey Vladimirovich

论文摘要

本文展示了一种用于训练感知神经网络的量子电路参数合成的方法。使用带有修改的Oracle功能的Grover的算法发现突触权重。描述了运行这些参数合成的电路的结果,用于训练三种不同拓扑的训练感知。这些电路是在100秒的IBM量子模拟器上运行的。使用量子合成器“ naginata”进行量子电路的合成,该量子是在本工作范围内开发的,该作品的源代码已发布并在Github上进一步记录。本文描述了用于训练单层感知的量子电路合成算法。目前,量子电路主要是通过手动将逻辑元素放在象征量子位的线上来创建的。创建量子电路合成器“ naginata”的目的是由于以下事实:即使量子算法中的操作数量略有增加,也会导致相应量子电路的大小显着增加。这在创建和调试这些量子电路方面造成了严重的困难。我们的量子合成器的目的是使用户有机会使用高级命令实现量子算法。这是通过为常用操作创建通用块来实现的,例如:加法器,乘数,数字比较器(比较操作员)等。因此,用户可以通过使用这些通用块来实现量子算法,并且量子合成器将以该算法的形式创建合适的电路,该算法以所选择的量子计算环境支持的格式,以支持该算法。这种方法大大简化了开发过程和调试量子算法。

This paper showcases a method of parametric synthesis of quantum circuits for training perceptron neural networks. Synapse weights are found using Grover's algorithm with a modified oracle function. The results of running these parametrically synthesized circuits for training perceptrons of three different topologies are described. The circuits were run on a 100-qubit IBM quantum simulator. The synthesis of quantum circuits is carried out using quantum synthesizer "Naginata", which was developed in the scope of this work, the source code of which is published and further documented on GitHub. The article describes the quantum circuit synthesis algorithm for training single-layer perceptrons. At the moment, quantum circuits are created mainly by manually placing logic elements on lines that symbolize quantum bits. The purpose of creating Quantum Circuit Synthesizer "Naginata" was due to the fact that even with a slight increase in the number of operations in a quantum algorithm, leads to the significant increase in size of the corresponding quantum circuit. This causes serious difficulties both in creating and debugging these quantum circuits. The purpose of our quantum synthesizer is enabling users an opportunity to implement quantum algorithms using higher-level commands. This is achieved by creating generic blocks for frequently used operations such as: the adder, multiplier, digital comparator (comparison operator), etc. Thus, the user could implement a quantum algorithm by using these generic blocks, and the quantum synthesizer would create a suitable circuit for this algorithm, in a format that is supported by the chosen quantum computation environment. This approach greatly simplifies the processes of development and debugging a quantum algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源