论文标题

实时数字双重框架可预测腿部机器人的可折叠地形

Real-time Digital Double Framework to Predict Collapsible Terrains for Legged Robots

论文作者

Haddeler, Garen, Palanivelu, Hari P., Ng, Yung Chuen, Colonnier, Fabien, Adiwahono, Albertus H., Li, Zhibin, Chew, Chee-Meng, Chuah, Meng Yee Michael

论文摘要

受数字孪生系统的启发,开发了一个新型的实时数字双框架,以增强机器人对地形条件的感知。基于相同的物理模型和运动控制,这项工作利用了与真实机器人同步的模拟数字双重同步,以捕获和提取两个系统之间的差异信息,这两个系统提供了多个物理数量的高维线索,以表示模型与现实世界之间的差异。柔软的,非刚性的地形会导致腿部运动中常见的失败,因此,视觉感知仅在估计地形的这种物理特性方面不足。我们使用了数字双重的估计来开发可折叠性的估计,这通过动态步行过程中的物理互动来解决此问题。真实机器人及其数字双重双重的感觉测量的差异用作用于地形可折叠性分析的基于学习的算法的输入。尽管仅在模拟中接受培训,但学习的模型可以在模拟和现实世界中成功执行可折叠性估计。我们对结果的评估表明,在不同情况下的概括和数字双重的优势在地面条件下可靠地检测到细微差别。

Inspired by the digital twinning systems, a novel real-time digital double framework is developed to enhance robot perception of the terrain conditions. Based on the very same physical model and motion control, this work exploits the use of such simulated digital double synchronized with a real robot to capture and extract discrepancy information between the two systems, which provides high dimensional cues in multiple physical quantities to represent differences between the modelled and the real world. Soft, non-rigid terrains cause common failures in legged locomotion, whereby visual perception solely is insufficient in estimating such physical properties of terrains. We used digital double to develop the estimation of the collapsibility, which addressed this issue through physical interactions during dynamic walking. The discrepancy in sensory measurements between the real robot and its digital double are used as input of a learning-based algorithm for terrain collapsibility analysis. Although trained only in simulation, the learned model can perform collapsibility estimation successfully in both simulation and real world. Our evaluation of results showed the generalization to different scenarios and the advantages of the digital double to reliably detect nuances in ground conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源