论文标题

连续体中的拓扑浮子绑定状态

Topological Floquet bound states in the continuum

论文作者

Li, Chunyan, Kartashov, Yaroslav V., Konotop, Vladimir V.

论文摘要

具有锯齿形波导的蜂窝状阵列,具有锯齿形Zigzag边缘和边缘的折射率梯度正交梯度可能支持连续体(BICS)中的floquet绑定状态。折射率的梯度导致浮球谱的强烈不对称性。创建这种浮子BIC的机制被理解为交叉的出现,并避免了由空间有限条纹阵列支撑的分支的交叉。有限阵列的整个光谱被分为大块的分支,即延伸区域中边缘状态的延续,揭示了通过避免越过横断与间隙状态断开连接的多个自我划线和散装模式。由于梯度,该系统中几乎所有州都局部定位,但是拓扑边缘状态比其他州表现出更强的定位。如此强烈的局部Floquet BICS与局部Wannier-Stark样的散装模式共处。边缘浮雕状态的鲁棒性通过其通过局部边缘缺陷的通过以缺失的波导形式确认。

A honeycomb array of helical waveguides with zigzag-zigzag edges and a refractive index gradient orthogonal to the edges may support Floquet bound states in continuum (BICs). The gradient of the refractive index leads to strong asymmetry of the Floquet-Bloch spectrum. The mechanism of creation of such Floquet BICs is understood as emergence of crossings and avoided crossings of the branches supported by spatially limited stripe array. The whole spectrum of a finite array is split into the bulk branches being continuation of the edge states in the extended zone revealing multiple self-crossings and bulk modes disconnected from the gap states by avoided crossing. Nearly all states in the system are localized due to the gradient, but topological edge states manifest much stronger localization than other states. Such strongly localized Floquet BICs coexist with localized Wannier-Stark-like bulk modes. Robustness of the edge Floquet states is confirmed by their passage through a localized edge defect in the form of a missing waveguide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源