论文标题
在脑部计算机接口应用程序中保留隐私和网络安全的框架
A Framework for Preserving Privacy and Cybersecurity in Brain-Computer Interfacing Applications
论文作者
论文摘要
脑部计算机界面(BCIS)构成了一个迅速发展的技术领域,其潜力在从工业上到艺术,游戏,游戏和军事的领域产生深远影响。如今,这些新兴的BCI应用程序通常仍处于早期技术准备水平,但是由于BCIS为人脑创建了新颖的技术沟通渠道,因此它们提出了隐私和安全问题。为了减轻这种风险,文献中已经提出了大量的对策,但是缺乏一个一般框架,它将描述如何通过设计的设计来保护BCI应用的隐私和安全性,即已经是BCI早期设计过程中不可或缺的一部分,以系统的方式进行了系统性的分析,例如,允许使用BCI Inoaditicates开发和商业化的产品进行适当的分析。在这里,我们建议采用最新的系统工程方法,用于隐私威胁建模,风险评估和隐私工程,向BCI领域。与以前的方法相比,这些方法以更系统和整体的方式来解决隐私和安全问题,并提供有关如何从原理转变为行动的可重复使用的模式。我们将这些方法应用于BCI和数据流,并为BCI应用中的网络安全提供了一个通用,可扩展且可操作的框架。该框架设计用于灵活地应用于当前和未来的BCI应用程序。我们还为BCIS提出了一系列新型的逐个设计功能,重点是促进BCI透明度作为BCI用户信息自决的先决条件,以及确保BCI用户自治的设计功能。我们预计我们的框架将有助于发展隐私,值得信赖的BCI技术。
Brain-Computer Interfaces (BCIs) comprise a rapidly evolving field of technology with the potential of far-reaching impact in domains ranging from medical over industrial to artistic, gaming, and military. Today, these emerging BCI applications are typically still at early technology readiness levels, but because BCIs create novel, technical communication channels for the human brain, they have raised privacy and security concerns. To mitigate such risks, a large body of countermeasures has been proposed in the literature, but a general framework is lacking which would describe how privacy and security of BCI applications can be protected by design, i.e., already as an integral part of the early BCI design process, in a systematic manner, and allowing suitable depth of analysis for different contexts such as commercial BCI product development vs. academic research and lab prototypes. Here we propose the adoption of recent systems-engineering methodologies for privacy threat modeling, risk assessment, and privacy engineering to the BCI field. These methodologies address privacy and security concerns in a more systematic and holistic way than previous approaches, and provide reusable patterns on how to move from principles to actions. We apply these methodologies to BCI and data flows and derive a generic, extensible, and actionable framework for brain-privacy-preserving cybersecurity in BCI applications. This framework is designed for flexible application to the wide range of current and future BCI applications. We also propose a range of novel privacy-by-design features for BCIs, with an emphasis on features promoting BCI transparency as a prerequisite for informational self-determination of BCI users, as well as design features for ensuring BCI user autonomy. We anticipate that our framework will contribute to the development of privacy-respecting, trustworthy BCI technologies.