论文标题
使用智能手机对多发性硬化症的个性化纵向评估
Personalized Longitudinal Assessment of Multiple Sclerosis Using Smartphones
论文作者
论文摘要
个性化的纵向疾病评估对于快速诊断,适当管理和最佳调整多发性硬化症(MS)的治疗策略至关重要。这对于识别特殊受试者特异性疾病特征也很重要。在这里,我们设计了一种新型的纵向模型,以使用可能包含缺失值的传感器数据以自动化方式绘制单个疾病轨迹。首先,我们使用在智能手机上管理的基于传感器的评估来收集与步态和平衡以及上肢功能有关的数字测量。接下来,我们通过插补对待缺失的数据。然后,我们通过使用广义估计方程来发现MS的潜在标记。随后,从多个培训数据集中学到的参数被结合起来形成一个简单的,统一的纵向预测模型,以预测MS以前看不见的人随着时间的流逝。为了减轻严重疾病评分的个体的潜在低估,最终模型结合了第一天的数据。结果表明,所提出的模型有望实现个性化的纵向MS评估。他们还表明,与步态和平衡以及上肢功能有关的功能(从基于传感器的评估中远程收集)可能是预测MS随时间推移的有用数字标记。
Personalized longitudinal disease assessment is central to quickly diagnosing, appropriately managing, and optimally adapting the therapeutic strategy of multiple sclerosis (MS). It is also important for identifying the idiosyncratic subject-specific disease profiles. Here, we design a novel longitudinal model to map individual disease trajectories in an automated way using sensor data that may contain missing values. First, we collect digital measurements related to gait and balance, and upper extremity functions using sensor-based assessments administered on a smartphone. Next, we treat missing data via imputation. We then discover potential markers of MS by employing a generalized estimation equation. Subsequently, parameters learned from multiple training datasets are ensembled to form a simple, unified longitudinal predictive model to forecast MS over time in previously unseen people with MS. To mitigate potential underestimation for individuals with severe disease scores, the final model incorporates additional subject-specific fine-tuning using data from the first day. The results show that the proposed model is promising to achieve personalized longitudinal MS assessment; they also suggest that features related to gait and balance as well as upper extremity function, remotely collected from sensor-based assessments, may be useful digital markers for predicting MS over time.