论文标题
反应有限的量子反应扩散动力学
Reaction-limited quantum reaction-diffusion dynamics
论文作者
论文摘要
我们考虑了系统的量子非平衡动力学,其中费米颗粒在一维晶格上连贯地跳跃,并且受到类似于经典反应 - 扩散模型类似的耗散过程。粒子可以成对消灭,$ a+a \ to \ emptySet $,在接触时凝结,$ a+a \ to $ a $,也可能分支,$ a \ to a+a $。在经典设置中,这些过程与粒子扩散之间的相互作用会导致关键动力学以及吸收状态相变。在这里,我们分析了相干跳跃和量子叠加的影响,重点是所谓的反应有限的制度。在这里,由于快速跳跃,空间密度波动很快就会平稳,对于经典系统而言,这是通过平均场方法描述的。通过利用时间依赖性的广义吉布斯集合方法,我们证明了量子相干性和破坏性干扰在这些系统中起着至关重要的作用,并负责局部保护的黑暗状态的出现以及均值超过均值之外的集体行为。这可以在平稳性和放松动力学期间表现出来。我们的结果强调了经典非平衡动力学与它们的量子对应物之间的基本差异,并表明量子效应确实改变了集体的普遍行为。
We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently hop on a one-dimensional lattice and are subject to dissipative processes analogous to those of classical reaction-diffusion models. Particles can either annihilate in pairs, $A+A \to \emptyset$, coagulate upon contact, $A+A \to A$, and possibly also branch, $A \to A+A$. In classical settings, the interplay between these processes and particle diffusion leads to critical dynamics as well as to absorbing-state phase transitions. Here, we analyze the impact of coherent hopping and of quantum superposition, focusing on the so-called reaction-limited regime. Here, spatial density fluctuations are quickly smoothed out due to fast hopping, which for classical systems is described by a mean-field approach. By exploiting the time-dependent generalized Gibbs ensemble method, we demonstrate that quantum coherence and destructive interference play a crucial role in these systems and are responsible for the emergence of locally protected dark states and collective behavior beyond mean-field. This can manifest both at stationarity and during the relaxation dynamics. Our results highlight fundamental differences between classical nonequilibrium dynamics and their quantum counterpart and show that quantum effects indeed change collective universal behavior.