论文标题

二进制相似粒子的随机填料部分:重新审视的OnSager排除体积模型

Random packing fraction of binary similar particles: Onsager's excluded volume model revisited

论文作者

Brouwers, H. J. H.

论文摘要

在本文中,研究了相似粒子的二进制随机堆积比例,尺寸比从统一到超过2的二进制堆积分数。对Onsager [1]提出的球形固定器和圆柱体的经典排除体积模型被重新审视,以推导这些二进制包装的渐近正确表达。二进制多分散性的填料分数等于2F(1 -f)x1(1- x1)(u -1)(u -1)^2 + o((u -1)^3),其中f是单封装分数,x1是一个分量的数量分数,u是两个粒子的大小比。该方程与Mangelsdorf和Washington [2]提供的半经验表达非常吻合,用于球形的随机关闭填料(RCP)。结合了这两种方法,提出了bidisperse填充部分的通用显式方程。该表达式与计算机模拟的二进制球形填料,包括球和随机松散球形包装的计算机模拟相比(1 <u <2及以后)。派生的通用封闭形式方程似乎与使用四种不同的计算机算法和RCP和随机松散包装(RLP)压实状态的计算机生成的包装数据的收集非常吻合。此外,目前的分析得出了不同压实状态下各种粒子形状的单分散堆积分数图。该地图的明确边界似乎与广泛的随机关闭和随机松动的包装数据非常吻合。附录A概述了(sphero)圆柱体的已发表的单分散堆积分数,用于从零到无穷大的宽高比,以及在RLP和RCP包装配置,它们与Onsager的理论有关。附录B介绍了A平面中磁盘的二进制填充分数(r^2),而在r^d(d> 3)中的超透明(d(d> 3)中)具有较小的差异。

In this paper, the binary random packing fraction of similar particles with size ratios ranging from unity to well over 2 is studied. The classic excluded volume model for spherocylinders and cylinders proposed by Onsager [1] is revisited to derive an asymptotically correct expression for these binary packings. the packing fraction increase by binary polydispersity equals 2f(1 - f)X1(1 - X1)(u - 1)^2 + O((u - 1)^3), where f is the monosized packing fraction, X1 is the number fraction of a component, and u is the size ratio of the two particles. This equation is in excellent agreement with the semi-empirical expression provided by Mangelsdorf and Washington [2] for random close packing (RCP) of spheres. Combining both approaches, a generic explicit equation for the bidisperse packing fraction is proposed. This expression is extensively compared with computer simulations of the random close packing of binary spherocylinder packings, spheres included, and random loose sphere packings (1 < u < 2 and beyond). The derived generic closed-form equation appears to be in excellent agreement with the collection of computer-generated packing data using four different computer algorithms and RCP and random loose packing (RLP) compaction states. Furthermore, the present analysis yields a monodisperse packing fraction map of a wide collection of particle shapes at different compaction states. The explicit boundaries of this map appear to be in good agreement with a broad collection of random close and random loose packing data. Appendix A presents an overview of published monodisperse packing fractions of (sphero)cylinders for aspect ratios from zero to infinity, and at RLP and RCP packing configurations, and they are related to Onsager's theory. Appendix B presents a derivation the binary packing fraction of disks in a plane (R^2) and hyperspheres in R^D (D > 3) with small size difference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源