论文标题

深广泛的Schrödinger桥

Deep Generalized Schrödinger Bridge

论文作者

Liu, Guan-Horng, Chen, Tianrong, So, Oswin, Theodorou, Evangelos A.

论文摘要

平均场游戏(MFG)是建模各个代理人与大量人群随机相互作用的集体行为的关键数学框架。在这项工作中,我们旨在解决一类充满挑战的MFG类,其中这些相互作用的偏好的可不同性可能无法提供给求解器,并敦促人群准确地收敛到某些所需的分布。尽管出于实际目的,这些设置动机良好,但足以使大多数(深)数值求解器瘫痪。然而,我们表明,作为熵调查的最佳运输模型,Schrödinger桥可以推广到接受平均场结构,因此可以解决这些MFG。这是通过向前回向的随机微分方程理论的应用来实现的,这很有趣,它导致了一个与时间差学习相似的结构的计算框架。因此,它为我们利用的深入强化学习开辟了新颖的算法联系,以促进实践培训。我们表明,我们提出的目标函数为平均场问题提供了必要和充分的条件。我们的方法被称为深广泛的Schrödinger桥(DEEPGSB),不仅在求解经典人口导航MFG方面的先验方法,而且还能够求解1000维意见的去极化,从而为高维MFGS设定了新的最先进的数值求解器。我们的代码将在https://github.com/ghliu/deepgsb上提供。

Mean-Field Game (MFG) serves as a crucial mathematical framework in modeling the collective behavior of individual agents interacting stochastically with a large population. In this work, we aim at solving a challenging class of MFGs in which the differentiability of these interacting preferences may not be available to the solver, and the population is urged to converge exactly to some desired distribution. These setups are, despite being well-motivated for practical purposes, complicated enough to paralyze most (deep) numerical solvers. Nevertheless, we show that Schrödinger Bridge - as an entropy-regularized optimal transport model - can be generalized to accepting mean-field structures, hence solving these MFGs. This is achieved via the application of Forward-Backward Stochastic Differential Equations theory, which, intriguingly, leads to a computational framework with a similar structure to Temporal Difference learning. As such, it opens up novel algorithmic connections to Deep Reinforcement Learning that we leverage to facilitate practical training. We show that our proposed objective function provides necessary and sufficient conditions to the mean-field problem. Our method, named Deep Generalized Schrödinger Bridge (DeepGSB), not only outperforms prior methods in solving classical population navigation MFGs, but is also capable of solving 1000-dimensional opinion depolarization, setting a new state-of-the-art numerical solver for high-dimensional MFGs. Our code will be made available at https://github.com/ghliu/DeepGSB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源