论文标题

在Lyman-$α$ Forest的一维相关性中压缩宇宙学信息

Compressing the cosmological information in one-dimensional correlations of the Lyman-$α$ forest

论文作者

Pedersen, Christian, Font-Ribera, Andreu, Gnedin, Nickolay Y.

论文摘要

从Boss/Eboss或正在进行的DESI等光谱调查中观察到Lyman-$ lyman-$α$(LY $α$)森林,为研究Megaparsec尺度上的结构增长提供了独特的窗口。对这些测量值的解释是一项复杂的任务,需要水动力学模拟在播层间培养基的热和电离状态上建模和边缘化。这种复杂性限制了在关节宇宙学分析中使用$α$聚类测量值的使用。在这项工作中,我们表明,LY $α$ forest的一维功率谱($ p_ \ mathrm {1d} $)的宇宙学信息内容可以压缩为简单的两参数可能性,而不会严重损失约束功率。我们使用流体动力学模拟模拟$ p_ \ mathrm {1d} $测量结果,并表明压缩的可能性是独立模型和无损的,即使在存在大规模中微子或原始功率谱的跑步的情况下也恢复了无偏见的结果。

Observations of the Lyman-$α$ (Ly$α$) forest from spectroscopic surveys such as BOSS/eBOSS, or the ongoing DESI, offer a unique window to study the growth of structure on megaparsec scales. Interpretation of these measurements is a complicated task, requiring hydrodynamical simulations to model and marginalise over the thermal and ionisation state of the intergalactic medium. This complexity has limited the use of Ly$α$ clustering measurements in joint cosmological analyses. In this work we show that the cosmological information content of the 1D power spectrum ($P_\mathrm{1D}$) of the Ly$α$ forest can be compressed into a simple two-parameter likelihood without any significant loss of constraining power. We simulate $P_\mathrm{1D}$ measurements from DESI using hydrodynamical simulations and show that the compressed likelihood is model independent and lossless, recovering unbiased results even in the presence of massive neutrinos or running of the primordial power spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源