论文标题

在凝结物理和粒子物理学中的神经形态计算的基准能量消耗和潜伏期

Benchmarking energy consumption and latency for neuromorphic computing in condensed matter and particle physics

论文作者

Kösters, Dominique J., Kortman, Bryan A., Boybat, Irem, Ferro, Elena, Dolas, Sagar, de Austri, Roberto, Kwisthout, Johan, Hilgenkamp, Hans, Rasing, Theo, Riel, Heike, Sebastian, Abu, Caron, Sascha, Mentink, Johan H.

论文摘要

在科学计算许多领域越来越流行的人工神经网络(ANN)的大量使用迅速增加了现代高性能计算系统的能源消耗。新型的神经形态范式提供了一种吸引人且可能更可持续的替代方案,该范式直接在硬件中实施了ANNS。但是,对于科学计算中用例中的神经形态硬件运行ANN的实际好处知之甚少。在这里,我们提出了一种测量能源成本和计算与传统硬件ANN的推理任务的方法。此外,我们为这些任务设计了一个体系结构,并根据最先进的模拟内存计算(AIMC)平台估算了相同的指标,这是神经形态计算中的关键范式之一。在二维凝结物质系统中的量子多体物理学中的用例进行比较,并在粒子物理学中大强壮的强子对撞机上以40 MHz的速率以40 MHz的速率进行异常检测。我们发现,与传统硬件相比,AIMC的计算时间最多要短一个数量级,以高达三个数量级的能源成本。这表明使用神经形态硬件进行更快,更可持续的科学计算的潜力。

The massive use of artificial neural networks (ANNs), increasingly popular in many areas of scientific computing, rapidly increases the energy consumption of modern high-performance computing systems. An appealing and possibly more sustainable alternative is provided by novel neuromorphic paradigms, which directly implement ANNs in hardware. However, little is known about the actual benefits of running ANNs on neuromorphic hardware for use cases in scientific computing. Here we present a methodology for measuring the energy cost and compute time for inference tasks with ANNs on conventional hardware. In addition, we have designed an architecture for these tasks and estimate the same metrics based on a state-of-the-art analog in-memory computing (AIMC) platform, one of the key paradigms in neuromorphic computing. Both methodologies are compared for a use case in quantum many-body physics in two dimensional condensed matter systems and for anomaly detection at 40 MHz rates at the Large Hadron Collider in particle physics. We find that AIMC can achieve up to one order of magnitude shorter computation times than conventional hardware, at an energy cost that is up to three orders of magnitude smaller. This suggests great potential for faster and more sustainable scientific computing with neuromorphic hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源