论文标题

部分可观测时空混沌系统的无模型预测

Learning to Relight Portrait Images via a Virtual Light Stage and Synthetic-to-Real Adaptation

论文作者

Yeh, Yu-Ying, Nagano, Koki, Khamis, Sameh, Kautz, Jan, Liu, Ming-Yu, Wang, Ting-Chun

论文摘要

鉴于一个人的肖像图像和目标照明的环境图,肖像重新旨在重新刷新图像中的人,就好像该人出现在具有目标照明的环境中一样。为了获得高质量的结果,最近的方法依靠深度学习。一种有效的方法是通过使用轻阶段捕获的所需输入输出对的高保真数据集监督深度神经网络的培训。但是,获取此类数据需要昂贵的特殊捕获钻机和耗时的工作,从而限制了对少数足智多谋的实验室的访问。为了解决限制,我们提出了一种新方法,该方法可以与最先进的(SOTA)重新确定方法相提并论,而无需轻阶段。我们的方法是基于认识到,成功重新对肖像图像的重新重新取决于两个条件。首先,该方法需要模仿基于物理的重新考虑的行为。其次,输出必须是逼真的。为了满足第一个条件,我们建议通过通过虚拟光阶段生成的训练数据来训练重新网络,该培训数据在不同的环境图下对各种3D合成人进行了基于物理的渲染。为了满足第二种条件,我们开发了一种新型的合成方式,将光真实主义带入重新的网络输出。除了实现SOTA结果外,我们的方法还提供了与先前方法相比的几个优点,包括戴眼镜的可控眩光以及更暂时的结果以重新确认视频。

Given a portrait image of a person and an environment map of the target lighting, portrait relighting aims to re-illuminate the person in the image as if the person appeared in an environment with the target lighting. To achieve high-quality results, recent methods rely on deep learning. An effective approach is to supervise the training of deep neural networks with a high-fidelity dataset of desired input-output pairs, captured with a light stage. However, acquiring such data requires an expensive special capture rig and time-consuming efforts, limiting access to only a few resourceful laboratories. To address the limitation, we propose a new approach that can perform on par with the state-of-the-art (SOTA) relighting methods without requiring a light stage. Our approach is based on the realization that a successful relighting of a portrait image depends on two conditions. First, the method needs to mimic the behaviors of physically-based relighting. Second, the output has to be photorealistic. To meet the first condition, we propose to train the relighting network with training data generated by a virtual light stage that performs physically-based rendering on various 3D synthetic humans under different environment maps. To meet the second condition, we develop a novel synthetic-to-real approach to bring photorealism to the relighting network output. In addition to achieving SOTA results, our approach offers several advantages over the prior methods, including controllable glares on glasses and more temporally-consistent results for relighting videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源