论文标题
适应性偏差校正,以改善次生预测
Adaptive Bias Correction for Improved Subseasonal Forecasting
论文作者
论文摘要
亚季节预测 - 预测温度和降水2至6周 - 对于有效的水分配,野火管理以及干旱和减轻洪水至关重要。最近的国际研究工作提高了操作动力学模型的亚季节能力,但是温度和降水预测技能仍然很差,部分原因是代表动态模型内大气动力学和物理学的顽固错误。在这里,为了应对这些错误,我们引入了一种自适应偏置校正(ABC)方法,该方法将最新的动力学预测与使用机器学习的观察结合了。我们表明,当应用于欧洲中等天气预测中心(ECMWF)的领先亚季节模型时,ABC将温度预测技能提高了60-90%(超过基线技能为0.18-0.25),降水预测技能和在40-69%的技能上提高了0.11-0.15的基线技能,我们在ABLEC的基准技能上提高了AB的练习,我们将其效果提高。并根据特定的气候条件确定机遇的高技能窗口。
Subseasonal forecasting -- predicting temperature and precipitation 2 to 6 weeks ahead -- is critical for effective water allocation, wildfire management, and drought and flood mitigation. Recent international research efforts have advanced the subseasonal capabilities of operational dynamical models, yet temperature and precipitation prediction skills remain poor, partly due to stubborn errors in representing atmospheric dynamics and physics inside dynamical models. Here, to counter these errors, we introduce an adaptive bias correction (ABC) method that combines state-of-the-art dynamical forecasts with observations using machine learning. We show that, when applied to the leading subseasonal model from the European Centre for Medium-Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by 60-90% (over baseline skills of 0.18-0.25) and precipitation forecasting skill by 40-69% (over baseline skills of 0.11-0.15) in the contiguous U.S. We couple these performance improvements with a practical workflow to explain ABC skill gains and identify higher-skill windows of opportunity based on specific climate conditions.