论文标题
数据驱动的分子晶体稳定性的解释
A data-driven interpretation of the stability of molecular crystals
论文作者
论文摘要
由于控制结构特性关系的分子间相互作用的微妙平衡,预测由分子构建基块形成的晶体结构的稳定性是一个高度非平凡的科学问题。一种特别活跃和富有成果的方法涉及对相互作用化学部分的不同组合进行分类,因为了解不同相互作用的相对能量可以使分子晶体的设计和微调其稳定性。尽管这通常是基于对已知晶体结构中最常见的基序的经验观察进行的,但我们建议采用有监督和无监督的机器学习技术的组合来自动建立广泛的分子构建块。我们介绍了一个针对结合(晶格)能量预测的结构描述符,并将其应用于有机晶体的策划数据集中,并利用其以原子为中心的性质来获得数据驱动的评估,以评估不同化学基团对晶体晶格能量的贡献。然后,我们使用结构 - 能量景观的低维表示来解释该库,并讨论可以从该分析中提取的洞察力的选定示例,从而提供了一个完整的数据库来指导分子材料的设计。
Due to the subtle balance of intermolecular interactions that govern structure-property relations, predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial scientific problem. A particularly active and fruitful approach involves classifying the different combinations of interacting chemical moieties, as understanding the relative energetics of different interactions enables the design of molecular crystals and fine-tuning their stabilities. While this is usually performed based on the empirical observation of the most commonly encountered motifs in known crystal structures, we propose to apply a combination of supervised and unsupervised machine-learning techniques to automate the construction of an extensive library of molecular building blocks. We introduce a structural descriptor tailored to the prediction of the binding (lattice) energy and apply it to a curated dataset of organic crystals and exploit its atom-centered nature to obtain a data-driven assessment of the contribution of different chemical groups to the lattice energy of the crystal. We then interpret this library using a low-dimensional representation of the structure-energy landscape and discuss selected examples of the insights into crystal engineering that can be extracted from this analysis, providing a complete database to guide the design of molecular materials.