论文标题

可压缩的Navier-Stokes方程的稀疏波的渐近稳定性

Asymptotic stability of rarefaction waves for compressible Navier-Stokes equations with relaxation

论文作者

Hu, Yuxi, Wang, Xuefang

论文摘要

建立了1-D松弛的压缩性等纳维尔 - 长方体方程的稀疏波的渐近稳定性。对于具有不同远场值的初始数据,我们表明存在一个独特的时间解决方案。此外,随着时间的流逝,所获得的解决方案显示出具有相应的Riemann初始数据的$ p $系统的稀有波溶液的收敛。证明基于$ l^2 $能量方法。

The asymptotic stability of rarefaction wave for 1-d relaxed compressible isentropic Navier-Stokes equations is established. For initial data with different far-field values, we show that there exists a unique global in time solution. Moreover, as time goes to infinity, the obtained solutions are shown to converge uniformly to rarefaction wave solution of $p$-system with corresponding Riemann initial data. The proof is based on $L^2$ energy methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源