论文标题
Pielou差异系统具有指数术语的动态行为
Dynamical behavior of Pielou's difference system with exponential term
论文作者
论文摘要
在本文中,我们研究了一种具有指数术语的Pielou差异系统 $$ y_ {n+1} = \ frac {az_n} {p+z_ {n}} e^{ - y_n},\; \; \; \; \; \; z_ {n+1} = \ frac {by_n} {q+y_ {n}} e^{ - z_n}。 $$,参数$ a,b,p,q,$是正实数,初始值$ y_0,z_0 $是任意的非负实数。使用平均值定理和Lyapunov功能技能,我们获得了一些足够的条件,这些条件可以保证溶液的界限和持久性以及平衡的全球渐近稳定性。此外,给出了两个数值示例以详细说明结果。
In this paper, we investigate a type of Pielou's difference system with exponential term $$ y_{n+1}=\frac{az_n}{p+z_{n}}e^{-y_n},\; \;\;\;\;\; z_{n+1}=\frac{by_n}{q+y_{n}}e^{-z_n}. $$ where the parameters $a,b,p,q, $ are positive real numbers and the initial values $y_0,z_0$ are arbitrary nonnegative real numbers. Using the mean value theorem and Lyapunov functional skills, we obtained some sufficient conditions which guarantee the boundedness and persistence of the solution, and global asymptotic stability of the equilibriums. Moreover, two numerical examples are given to elaborate on the results.