论文标题

部分可观测时空混沌系统的无模型预测

Constructing uniform 2-factorizations via row-sum matrices: solutions to the Hamilton-Waterloo problem

论文作者

Burgess, A. C., Danziger, P., Pastine, A., Traetta, T.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we formally introduce the concept of a row-sum matrix over an arbitrary group $G$. When $G$ is cyclic, these types of matrices have been widely used to build uniform 2-factorizations of small Cayley graphs (or, Cayley subgraphs of blown-up cycles), which themselves factorize complete (equipartite) graphs. Here, we construct row-sum matrices over a class of non-abelian groups, the generalized dihedral groups, and we use them to construct uniform $2$-factorizations that solve infinitely many open cases of the Hamilton-Waterloo problem, thus filling up large parts of the gaps in the spectrum of orders for which such factorizations are known to exist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源