论文标题

评估在逼真的分布变化下,评估EEG-ML模型的潜在空间鲁棒性和不确定性

Evaluating Latent Space Robustness and Uncertainty of EEG-ML Models under Realistic Distribution Shifts

论文作者

Wagh, Neeraj, Wei, Jionghao, Rawal, Samarth, Berry, Brent M., Varatharajah, Yogatheesan

论文摘要

最新的大型数据集在生物医学素中的可用性启发了多种医疗保健应用的代表性学习方法的开发。尽管预测性能取得了进步,但这种方法的临床实用性在暴露于现实世界数据时受到限制。这项研究开发了模型诊断措施,以在部署前检测潜在的陷阱,而无需访问外部数据。具体而言,我们专注于通过数据转换对电生理信号(EEG)的现实数据转移进行建模,并通过分析a)模型的潜在空间和b)这些变换下的预测不确定性。我们使用公开可用的大规模临床EEG进行了多个EEG功能编码器和两个临床相关的下游任务进行实验。在这种实验环境中,我们的结果表明,在提出的数据转移下,潜在空间完整性和模型不确定性的度量可能有助于预测部署过程中的性能下降。

The recent availability of large datasets in bio-medicine has inspired the development of representation learning methods for multiple healthcare applications. Despite advances in predictive performance, the clinical utility of such methods is limited when exposed to real-world data. This study develops model diagnostic measures to detect potential pitfalls before deployment without assuming access to external data. Specifically, we focus on modeling realistic data shifts in electrophysiological signals (EEGs) via data transforms and extend the conventional task-based evaluations with analyses of a) the model's latent space and b) predictive uncertainty under these transforms. We conduct experiments on multiple EEG feature encoders and two clinically relevant downstream tasks using publicly available large-scale clinical EEGs. Within this experimental setting, our results suggest that measures of latent space integrity and model uncertainty under the proposed data shifts may help anticipate performance degradation during deployment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源