论文标题

带有检索的短语级提示的神经机器翻译的零射击域改编

Zero-shot Domain Adaptation for Neural Machine Translation with Retrieved Phrase-level Prompts

论文作者

Sun, Zewei, Jiang, Qingnan, Huang, Shujian, Cao, Jun, Cheng, Shanbo, Wang, Mingxuan

论文摘要

域的适应是神经机器翻译的重要挑战。但是,传统的微调解决方案需要多次额外的培训,并产生高昂的成本。在本文中,我们提出了一种非调节范式,通过基于及时的方法来解决域的适应性。具体来说,我们构建了双语短语级数据库,并从中检索相关对作为输入句子的提示。通过利用检索到的短语级提示(REPP),我们有效地提高了翻译质量。实验表明,我们的方法改善了域特异性的机器翻译,可用于6.2 BLEU分数,并改善了在没有额外训练的情况下,精度为11.5%的翻译约束。

Domain adaptation is an important challenge for neural machine translation. However, the traditional fine-tuning solution requires multiple extra training and yields a high cost. In this paper, we propose a non-tuning paradigm, resolving domain adaptation with a prompt-based method. Specifically, we construct a bilingual phrase-level database and retrieve relevant pairs from it as a prompt for the input sentences. By utilizing Retrieved Phrase-level Prompts (RePP), we effectively boost the translation quality. Experiments show that our method improves domain-specific machine translation for 6.2 BLEU scores and improves translation constraints for 11.5% accuracy without additional training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源