论文标题
Semigroup $ \ mathbb {n}^{2} $的自动型动作的部分偶像交叉产品的原始理想空间
The primitive ideal space of the partial-isometric crossed product by automorphic actions of the semigroup $\mathbb{N}^{2}$
论文作者
论文摘要
令$(A,\ Mathbb {n}^{2},α)$为一个动态系统,由$ C^*$ - 代数$ a $和ACTON $ \ MATHBB {N}^{2} $的操作$α$ of Automorphismss $ a $。令$ a \times_α^{\ textrm {piso}}} \ mathbb {n}^{2} $是系统的部分iSmotiation交叉产品。我们运用了一个事实,即这是集团$ \ mathbb {z}^{2} $的交叉产品的整个角落,以便对其原始理想空间进行完整的描述。
Let $(A,\mathbb{N}^{2},α)$ be a dynamical system consisting of a $C^*$-algebra $A$ and an action $α$ of $\mathbb{N}^{2}$ on $A$ by automorphisms. Let $A\times_α^{\textrm{piso}}\mathbb{N}^{2}$ be the partial-isometric crossed product of the system. We apply the fact that it is a full corner of a crossed product by the group $\mathbb{Z}^{2}$ in order to give a complete description of its primitive ideal space.